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1. Introduction

Colin MacLaurin (1698–1746) graduated Master of Arts from the University of Glasgow

in 1713 and became Professor of Mathematics at Marischal College, Aberdeen in 1717.

Little is known about his activities between these events; according to Patrick Murdoch,

editor of [10] and author of the biographical sketch of MacLaurin contained therein, he

spent a further year at Glasgow in the study of Divinity and then withdrew to the home

of his uncle, the Rev. Daniel MacLaurin, minister of Kilfinan parish, Argyllshire, where

he continued his studies in mathematics and philosophy and read classic authors. In

fact, Daniel MacLaurin, to whom Colin affectionately dedicated his MA dissertation, (1)

had been much involved in his nephew’s upbringing: Colin’s father, the Rev. John

MacLaurin, minister of Kilmodan parish, Argyllshire, died some six weeks after the

boy’s birth and his mother died in 1707.

Daniel MacLaurin sent his nephew’s dissertation to his colleague the Rev. Colin

Campbell, minister of Ardchattan and Muckairn parish, Argyllshire. Campbell, who

enjoyed a considerable reputation in natural philosophy and mathematics, responded

enthusiastically about the work and included his own commentary on it. (2) All this was

conveyed to the young mathematician, who now wrote to Campbell (Sept. 12, 1714):

‘. . . This satisfaction received no small addition from the sight of a letter my

Uncle had received from you concerning my Theses not only on the score of its

affording an uncontestable proof that fame had not overrated your skill, but

also because of the characters it bore of your civility & discretion in giving so

favourable treatment to that discourse which I am sensible was lyable to many

(1) The dissertation is entitled De Gravitate, aliisque Viribus Naturalis (Concerning

Gravity and other Natural Forces). I have reproduced it along with a translation and

commentary in Part I of [17].

(2) Concerning Campbell see J. Henry’s article in [7]. Campbell conducted an exten-

sive correspondence with distinguished figures from mathematics, natural philosophy

and other areas of science. See: ‘Letters from mathematicians to Colin Campbell, and

mathematical papers’ in the Colin Campbell Collection, Edinburgh University Library

(GB 237 Coll–38). Concerning the cited letters: Daniel MacLaurin’s letter to Camp-

bell is MS 3099.15.4; there is a typed copy of Campbell’s reply in MS 3099.15; Colin

MacLaurin’s letter to Campbell is MS 3099.15.1 and the enclosure, with which this ar-

ticle is concerned, is MS 3099.15.6 – there is a copy of the letter in the National Library

of Scotland (MS 3440.f32) and it is reproduced as Letter 116 in [12]. Typed copies of

all the MacLaurin items, including the enclosure, will be found at Glasgow University

Library among papers collected by John Eaton (see especially MS Gen. 1332).
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exceptions & very much deserved your censure. . . . ’

After some comments about his dissertation, the universality of the law of gravitation

and theological matters, he added:

‘But since I have mentioned the use of mathematicks I shal beg your pardon

for troubling you with some thoughts I have relating to their use in morality.

I have sent them to you under the title of De Viribus Mentium Bonipetis.’

The letter contained an enclosure of seventeen pages, (3) the first ten of which form

De Viribus Mentium Bonipetis (Concerning the good-seeking forces of minds). In this

article MacLaurin is concerned with ‘good things’ (bona), but these are not formally

defined. He first discusses their intensities – essentially time-dependent density functions

– and then presents several mathematical models for the forces by which our minds are

attracted to ‘good things’ over time. Ideas of exponential decay are encountered; of

course, he does not use this terminology or associated notation, which belong to a later

time. There are also some interesting applications of integration and a few comments

on moral or theological matters.

An outline of De Viribus Mentium Bonipetis along with some background to it has

been given by J. V.Grabiner in [5] (see also [6]); she also cites the unpublished Ph.D

thesis of E. L. Sageng [15], which has rather more discussion of this item. MacLaurin

was to become one of the greatest exponents in his time of Newtonian ideas, especially

through his Treatise of Fluxions (1742) [9], (4) and Grabiner sees his article as a ‘sort of

trial run of Maclaurin’s use of the Newtonian style’ [5]. It is no doubt with justification

that she refers in [6] to the work as ‘a Latin essay still (perhaps mercifully) unpublished

today’. Nevertheless, I find some interesting mathematics in it and in the rest of the en-

closure and I am sure that MacLaurin would not have submitted to Campbell’s scrutiny

anything that he did not consider to be a worthwhile development. On the other hand

Campbell did not reply to MacLaurin’s letter (5) and I do not know of any further work

of this type by MacLaurin, although he did write more on theological matters (see Book

IV, Chapter IX of [10] or [11]). Perhaps De Viribus Mentium Bonipetis has to be seen as

a one-off, youthful exercise composed at a time when MacLaurin was seeking to apply his

mathematics to his other great interest, theology. As pointed out by Grabiner [6] others

were applying mathematics to theological matters about this time; indeed, MacLaurin

(3) The first eleven pages are numbered and p. 11 is headed ‘Prop. altera’. These

annotations appear to have been added later, possibly in a different hand.

(4) Grabiner has discussed the significance of this work in [4].

(5) See MacLaurin’s second letter to Campbell (July 6, 1720; MS 3099.15.2, [12], Letter

117).
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may have been influenced by the earlier work Theologiae Christianae Principia Mathe-

matica (1699) by fellow Scot John Craig (or Craigie) (1663–1731) [1] (see also [2], which

contains a translation of part of [1]). This controversial work, which uses probabilistic

ideas, has been seen as a parody of Newton’s Principia but has also received some more

sympathetic comment. (6) Sageng (along with Grabiner) notes Francis Hutcheson’s An

Inquiry into the Original of our Ideas of Beauty and Virtue (1725) [8] which includes

several simple mathematical formulae in an article headed: To find a universal Canon

to compute the Morality of any Actions, . . . . (7)

MacLaurin concludes his letter to Campbell by telling him that he has been apply-

ing fluxional methods to prove many of Newton’s results from the Principia and as an

example of this he is also sending

‘another paper being some easy fluxional demonstrations of the Prop 21, 22 of

the 2d Book of Neuton’s principles with what he has asserted without demon-

stration in their Scholiums together with some other smal Improvements.’

This material constitutes the rest of the enclosure and is concerned with the effect of

centripetal force on the density and compression of a fluid; a similar range of mathemat-

ical techniques is applied to determine density under various assumptions concerning

the other quantities. Both [9] and [10] contain material on fluids, notably in connection

with the figure of the earth and the tides (cf. Part III of [17]), but I have not found

anything in them which is directly related to the present material.

Section 2 of this article contains my translation of De Viribus Mentium Bonipetis. I

(6) See A. I. Dale’s article on Craig in [7]. Craig’s work is noted by Todhunter in [16],

but largely to record negative views of it by others. It is perhaps of interest to note

that there are seven letters from Craig in the Colin Campbell Collection (MS 3099.8;

see footnote (2)). MacLaurin met Craig in London in 1719 (see letter of July 6, 1720

cited in footnote (5)).

(7) See [8], Treatise II: Section III, Articles XI, XII, XV. The following assertion from

Article XV seems worth recording here: ‘The applying of a mathematical Calculation to

moral Subjects, may appear perhaps at first extravagant and wild; but some Corollarys,

which are easily and certainly deduc’d below ∗, may shew the Conveniency of this at-

tempt, if it could be further pursu’d.’ (The ∗ indicates a footnote directing the reader

to Sect. 7, Art. VI, VII.)

Francis Hutcheson (1694–1746), an Ulsterman, overlapped with MacLaurin at Glas-

gow University. He became Professor of Moral Philosophy there in 1730. See his entry

in [7] by J. Moore for further details. MacLaurin wrote to Hutcheson in 1728 recalling

their earlier association and praising [8] ([12], Letter 13).
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have kept it quite literal and generally I have not attempted to paraphrase MacLaurin’s

text. The translation is accompanied in Section 3 by some notes which are intended to

clarify MacLaurin’s mathematical manipulations and assertions. The roman numeral

superscripts which appear within my translation refer the reader to the corresponding

notes; my footnotes are indicated throughout by arabic numerals. Section 4 contains

a translation of the material on fluids along with my commentary and some relevant

extracts from Newton. Since the original manuscript is not always easily legible I have

attempted to reproduce (with some editorial licence) in Section 5 the Latin text of the

whole enclosure. I hope that my efforts may be of some use to scholars with interests

in MacLaurin or the Colin Campbell Collection.
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2. Translation of De Viribus Mentium Bonipetis

Concerning the good-seeking forces of minds

Our minds, trying to reach every small part of apparent goodness in any good thing,

are carried necessarily to the good thing itself by a force which is the sum of the forces

by which its individual particles are sought. But if equal parts are sought with equal

forces, or if the good-seeking accelerating force of all is the same, the sum of the forces

with which the parts of any good thing are sought will be as the sum of the parts or as

the quantity of goodness in that good thing: and consequently, the forces with which

our minds are carried into different good things are (other things being equal) as the

quantities of goodness in those good things. Therefore, in order that we may understand

the schemes of those forces, the quantities of those good things require to be elucidated

first of all.

C

M

D

A BP

Therefore, let the straight line AB represent the duration of the good thing, at its

individual points P let normals PM be erected, which are as the intensities of the good

thing (i.e. the instantaneous goodnesses) at the end of the time AP, and, if AD is the

intensity with which the good thing begins, and BC that with which it ceases to exist,

then the total good thing of duration AB will be as the area ADCB. For the total good

thing is the sum of the instantaneous goodnesses, or as the sum of the ordinates PM,

and so as the curvilinear area ADMCB or if the intensity PM is called I and the good

thing which has passed by the time AP is called B, and the time AP t, there will result

from the definition of intensity: (8)

Ḃ

ṫ
= I , Ḃ = Iṫ & B = F Iṫ = ADMP ,

therefore the good thing of duration AB = ADCB. If the apparent intensities and

durations are substituted for the real intensities and durations, the apparent quantity

of the good thing can be found by means of this proposition.

Note: these ideas and also others which follow can easily be applied to bad things.

By means of this proposition the maximum or minimum intensity of any good or

bad thing is found by the common methods of maxima and minima, for if PM is the

(8) In the following expressions the symbol F stands for fluent, essentially the integral.

MacLaurin notes this at a later occurrence in the second part of his manuscript (see

Section 4).
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maximum or minimum ordinate, the intensity is of the same order. But if the good

thing is not continuous, but some distance of time occurs between its various parts,

it can be regarded as the aggregate of the various lesser good things whose individual

parts, determined by this proposition and added together, make it up.

Moreover, it is clear from this that very many good things whose durations are

infinite, are themselves finite; for there exist very many curvilinear areas extended to

infinity or infinitely long, which neverthless are finite. The area between the cissoid

and its asymptote (i) and the area between hyperbolas of any power (the conic alone

excepted) and their asymptotes (ii) are of this type. But more particularly if the inten-

sities of any good thing decrease in a geometric progression while the times increase

in an arithmetic progression, then in this case the curve DMC will be the common

logarithm (iii) (see the figure on page 8) (9) and the infinite area ADCB= ATED, where

it is supposed that DT touches the curve at D.(iv) Therefore a good thing of this type

of infinite duration AB is equal to a uniform good thing of duration AT and of constant

intensity AD. In the same way, if any good thing observed on one day has a given

quantity but on the following day only half of it and decreases thus indefinitely so that

the good thing observed one day is half of that of the preceding day and twice that of

the next day: I say that the total good thing of this type continued for infinitely many

days is only twice the good thing which was observed on the first day, which is clear

from the fact that

1 +
1

2
+

1

4
+

1

8
+

1

16
+

1

32
&c: = 2 .

If the intensities of the good thing increase uniformly taking their beginning from

nothing, the intensities will be directly proportional to the durations, and the good

things themselves will be as the squares of the durations. But if the intensity is as some

positive power of the duration passed through, the good things will nevertheless be

perpetually in a ratio composed of the durations and the intensities; and consequently, if

the durations of them are infinite, the good things themselves will be infinitely infinite.(v)

Also uniform good things, whose intensities are invariable, are as the durations and

intensities jointly, since the figure ADCB now becomes a parallelogram.

(9) The reference is to p. 8 of MacLaurin’s manuscript. Here the appropriate diagram

is on p. 9, but is reproduced below for convenience.

O A P B

D N

M
C

T

E Q
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Q A B

H
O

CD

L

1◦. Hence a good thing of this type whose duration is infinite will itself be infinite.

Hence:

2◦. It is infinitely more preferable to increase the intensity of an infinitely lasting good

thing of this type by the smallest possible quantity than to extend its duration as far

as possible; for by adding DL to the intensity AD of the infinite good thing ADCB, we

adjoin the infinite increase DLOC to it; but by adding AQ to the infinite duration AB

the increment of the finite good thing AQHD results.

Therefore the complaints of good men about the miseries of this life must be removed

by the consideration of the increment which is added as a result to the intensity of

future eternal happiness, by which it comes about (by chance) that their total happiness

altogether is greater than if it had started from the beginning of their existence and man

had never fallen. (10) Moreover it seems to be quite clear that the intensity is increased

on account of the fact that gratitude is greater and very many virtues are exercised for

which there would be scarcely any place if all innocent men were to conduct their life

without any bad things or misfortunes.

3◦. In order that two good things of this type be equal, their intensities must be

reciprocally proportional to their durations.(vi)

These things have been introduced concerning the measurement of good things in gen-

eral; something more particular will have to be said about them later.

Hitherto, we have supposed the good-seeking accelerating force,(vii) or the force by

which a given part of the good thing is sought, to be constant and everywhere the same.

However, experience teaches that it is varied according to the different distance of time

and from other causes. Let it be supposed that the good thing is uniform. If in the

(10) In translating this lengthy and complicated sentence I have recast the first part in

passive form since I could not find an easy way of incorporating the original active form

(the consideration . . . must remove the complaints . . . ). Sageng also gives a translation

of this sentence and the next in [15]. While his is similar, it does conclude with ‘. . . if

all men lived their lives as innocents without any evils or misfortunes.’ Perhaps this

makes more sense, but I have retained my version, mindful of Latin’s love of what

one of my teachers used to call a ‘noun sandwich’: where a noun is modified by two

adjectives the order is adjective–noun–adjective; in the present case we have ‘omnes

homines innocentes’ (see p. 31, line 6).

7



given PN the PM are taken proportional to the good-seeking accelerating forces at the

distances OP, the area ADMP will be as the force by which the mind is driven towards

the good thing APND.

O A P B

D N

M
C

First of all, therefore, let the good-seeking force be supposed to be reciprocally

proportional to the distance of the time,(viii) and the curve DMC will be the hyperbola

of Apollonius drawn with centre O and asymptotes OD, OB. (11) Under this hypothesis:

1◦. If the durations of the good thing, increased by the distance OA, are taken in

geometric progression, the forces with which the mind tends to those good things will

be in arithmetic progression and the accelerating forces will be in geometric progression.

2◦. A good thing of infinite duration attracts the mind to it with an infinite force, for

the hyperbolic area ADCB is infinite.

3◦. According to this hypothesis good things which are as the distances of the times

of the mind from them, are equally sought: as where the good things which are as the

numbers 1, 2, 3, 4, 5, 6 at distances of the times which are respectively as 1, 2, 3, 4, 5,

6 will be equally sought. For example, any good thing separated from the present by

one hour and its double to be taken after two hours would be sought equally according

to this hypothesis.

4◦. The force into the present good thing is infinitely greater than the force into the

same good thing removed even by a very small distance. And never at any non-infinite

distance is it nothing.

And these two last Corollaries trouble me to the extent that I am of the opinion that

this hypothesis is not true.

D

H KA

Q
I

M
O

Let our mind be driven towards any present good thing by a force as AD; further-

more at distance AH, as HI. Now let it be supposed that it seeks the present good thing

with a force as AQ (= HI) and at distance AH it seeks it with a force which is to AQ

(11) In MacLaurin’s diagram OD is certainly not an asymptote. Perhaps he means the

limiting position of OD as A → O.
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as HI : AD, or as HM. But if HK is taken equal to AH on account of the same ratios

as AQ (= HI) was reduced into MH, now HI will become OK (= MH); thus AD, HI, KO

are continued proportionals; and so on where it is probable that the good-seeking accel-

erating forces decrease in a geometric progression if the times increase in an arithmetic

progression.(ix)

According to this hypothesis the decreases or fluxions of the forces will be as the

forces themselves (this is shown by Lemma 1 of Book II of Newton’s Principia). (12)

This hypothesis is quite in accordance with the malice and diligence of the Tempter,

who probably applies greater effort to the containment of force the greater it is; hence it

is very probable that Satan tries to establish this law in our minds or at least to suggest

it while we are considering the good things of the future life.

This hypothesis is confirmed somewhat by experience: for the excess of the force

into a good thing at distance one hour from this instant over the force into the good

thing to be obtained after two hours, is greater than the excess of force into the good

thing removed by a year over the force into the good thing to be obtained after a year

and one hour. We are not so troubled about this difference as about the former whence

it is clear that the good-seeking accelerating force does not decrease uniformly, so that

any particle of time takes away the same quantity from it. But rather it decreases

more rapidly while it is greater and more slowly when it becomes smaller; as when the

decrease of force is as the force itself or some power of it.

O A P B

D N

M
C

T

E Q

This having been put in place: (13)

1◦. Since the area ADCB= ADET the force into the infinite good thing ADEQBA will

be equal to the force into the good thing ATED and the force AD will be continued

uniform over the time AT. Therefore the force with which the infinite good thing is

sought according to this law, is finite and it can be equalled or even overcome by

temporary and finite good things. And hence comes forth a means for explaining a

(12) The Lemma and its proof are as follows (in my translation):

Quantities proportional to their differences are continually proportional.

Let A be to A − B as B to B − C and C to C − D etc. and there will result by

division (dividendo) that A is to B as B is to C and C is to D etc. Q.E.D.

(13) The above diagram is the one to which MacLaurin refers earlier (see footnote (9)).

The line DT is tangent to the curve at D.
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remarkable phenomenon: namely, that very many people who seem to be of the opinion

that virtue brings an infinite good thing after itself, nevertheless pursue vices.

A B

D C

2◦. The forces into different infinite good things ADQB, PNQB are as the forces at

their beginnings AD, PN, and in general the force into any good thing at one distance

(namely, ADBC) is to the force into the same good thing at another distance, as the

force at its beginning at the first distance to the force at the beginning at the other

distance: and if that good thing is set at various arithmetically proportional distances,

the forces towards the entire good thing will be in geometric progression.

But this hypothesis operates with this single difficulty that the good-seeking force

vanishes at infinite distance only and consequently it seems that it cannot hold in the

good things of this life. Therefore let us see what other power of the good-seeking force

we may select to which we set its decrease proportional.(x) We have just said that it

is not unity; that it does not exceed unity is established by the fact that the curve

DMC would then be of hyperbolic type, and consequently the force into the present

good thing would be infinite; that it is not negative or less than zero comes from the

fact that this decrease is greater the greater the force is, not the smaller; that it is not

itself 0 is in accordance with the fact that this decrease varies and is not perpetually the

same. Therefore it is neither 0 nor 1, neither greater than 1 nor less than 0; therefore

it is between 0 and 1. What remains therefore than that we take the mean between 0

and 1, namely 1
2 . Therefore let v̇ be as v1/2 or

√
v. With the assumption that v is the

good-seeking force and t the time of duration = OP, therefore let

v̇ :
√

v :: ṫ :
√

a , therefore
v̇√
v

=
ṫ√
a

(Note. a is the accelerating force into the present good thing), therefore by finding the

fluents

2a − 2
√

av = t , therefore
√

v =
2a − t

2
√

a
and 2a − t 2 = 4av .

O

E

M

F

Q

BP
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Therefore, if the conical parabola BME is drawn with parameter 4a = 4 OE, focus F

and axis BF, then PM will be the good-seeking accelerating force at distance OP. Hence:

1◦. The good-seeking force is zero at the finite distance OB. Hence:

2◦. The good-seeking force is in the duplicate ratio of the distance of the time from the

point in which it vanishes.

3◦. Since the area BQM is 2
3

BQMP, there will be

BMP =
1

3
BQMP =

1

3
PM × BP =

BP3

12 OE
,

or as BP3, therefore

OEMP =
OB3 − BP3

12 OE
.
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3. Mathematical notes on De Viribus Mentium Bonipetis

(i) Area between the cissoid and its asymptote

The cissoid of Diocles is the curve defined by the parametric equations

x =
2at2

1 + t2
, y =

2at3

1 + t2
(t ∈ R) .

As t → ±∞ we have x → 2a, while y → ∞ as t → ∞ and y → −∞ as t → −∞. The

line x = 2a is the asymptote and the area between the cissoid and its asymptote is given

by either of the integrals

2

∫ 2a

0

y dx = 2

∫
∞

0

y
dx

dt
dt = 16a2

∫
∞

0

t4

(1 + t2)3
dt ,

2

∫
∞

0

(2a − x) dy = 2

∫
∞

0

(2a − x)
dy

dt
dt = 8a2

∫
∞

0

t2(3 + t2)

(1 + t2)3
dt ,

whose common value can easily be shown to be 3πa2 (for example, substitute t = tan θ).

Concerning this curve see [3] (especially pp. 39–40).

(ii) Area between hyperbolas of any power and their asymptotes

Here MacLaurin is referring to integrals of the form
∫
∞

a
x−αdx, where a > 0 and α is

a positive real number, in particular a positive integer. Such an integral converges if

and only if α > 1. The case α = 1 corresponds to the rectangular hyperbola, the conic

which MacLaurin excepts.

(iii) Geometric/arithmetic progressions

Here the intensity I takes the form I = I0e
−kt for some positive constant k. With times

in arithmetic progression we have tn = t0 +nδt (n = 0, 1, . . . ; t0, δt constants) and then

In+1 = Ine−kδt, so that the corresponding intensities form a geometric progression with

common ratio e−kδt.

It is at first curious that MacLaurin should refer to the curve DMC as the common

logarithm. As an exponential it is of course a reflection of a logarithmic curve and in

that sense it has the same shape. Exponential notation appears to have been introduced

by Euler in the mid 1700s. Before then the idea was expressed in words: the number

whose logarithm is a given quantity. Natural and common logarithms (base 10) are

constant multiples of each other, so in describing the general shape of a curve, it does

not matter which of the adjectives common and natural we use.

(iv) Areas

MacLaurin’s procedure in this case for finding the area under the curve is interesting,

and no doubt uses a standard rule of his time.
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D N

M
C

T
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We have to evaluate ∫
∞

a

I0e
−ktdt =

1

k
I0e

−ka , (α)

where A is the point (a, 0). The tangent to the curve at the point D(a, I0e
−ka) has

gradient −kI0e
−ka and equation

y = −kI0e
−ka(t − a) + I0e

−ka .

It therefore meets the t-axis where t = a + 1
k and so the rectangle ATED has area

AT × AD =
1

k
× I0e

−ka ,

which is the value of the integral in (α).

In MacLaurin’s subsequent calculation we have In+1 = 1
2
In with δt = 1 (day), so

that e−k = 1
2 (see (iii) above). Over the first day the ‘good thing’ is

∫ a+1

a

I0e
−ktdt =

1

k
I0

(

e−ka − e−k(a+1)
)

=
1

k
I0e

−ka
(
1 − e−k

)
=

1

2k
I0e

−ka , (β)

while over the infinite range it is as given in (α), namely twice that for the first day.

For MacLaurin’s discrete calculation note that the ‘good things’ on successive days are

given by (cf. (β))

1

k
I0e

−k(a+n−1)
(
1 − e−k

)
=

1

2k
I0e

−k(a+n−1) (n = 1, 2, . . .) ,

and so they form a geometric progression with common ratio e−k = 1
2
.

(v) Uniform increase from zero; positive powers

In the first case we have I = k(t − a) (t ≥ a), so that the ‘good thing’ as a function of

t is ∫ t

a

k(τ − a) dτ =
1

2
k(t − a)2 ,

and is therefore proportional to the square of the duration. In the general case of

I = k(t − a)n (t ≥ a) this becomes

∫ t

a

k(τ − a)n dτ =
1

n + 1
k(t − a)n+1 =

1

n + 1
(k(t − a)n) × (t − a) ,

13



which is proportional to the product of the intensity and the duration and goes off to

infinity as t → ∞.

(vi) Uniform good things: Corollary 3

Here we require
∫ t1

a1
k1 dt =

∫ t2
a2

k2 dt, that is k1(t1 − a1) = k2(t2 − a2), or equivalently

for non-zero quantities
k1

k2
=

t2 − a2

t1 − a1
;

in words: the ratio of the intensities is equal to the reciprocal of the corresponding ratio

of durations.

(vii) Accelerating force

By accelerating force MacLaurin intends dF
dt

, where F (t) is the total force of attraction

of the mind into the ‘good thing’ from its inception up to time t. He now assumes his

‘good thing’ to be uniform and considers various forms for dF
dt

or its derivative (Cases

1–3 below).

O A P B

D N

M
C

Since MacLaurin is generally concerned with relations of proportionality there is usually

no loss of generality in taking the graph of the accelerating force through D as shown.

Here and throughout I have translated MacLaurin’s ‘distantia temporis’ literally as

‘distance of time’: apparently it is just the elapsed time from the start.

(viii) Case 1: reciprocally proportional to the distance of time

From dF
dt = k

t (t ≥ a > 0 ; a = OA) we obtain

F (t) =

∫ t

a

k

τ
dτ = k ln

t

a
. (γ)

Then F (t) − F (τ) = k ln(t/τ). Thus, if we take a sequence of times tn in geometric

progression, so that tn+1/tn is constant, the corresponding differences of the forces will

be constant; that is to say, the forces will form an arithmetic progression. This is

Corollary 1, while Corollary 2 is just the fact that the integral (γ) does not converge as

t → ∞.

I have struggled to understand Corollary 3 but have come to the conclusion that it

simply expresses the fact that, if in (γ) we replace the lower limit a by ra and the upper

limit t by rt (or equivalently, replace a by ra and the duration t − a by r(t − a)), then

14



the value of the integral is unchanged. In the last sentence of Corollary 3 ‘its double’

would then refer to doubling the duration.

Corollary 4 may describe the following situation where we have two ‘processes’ with

the same starting value:

ah/t t ∈ [a,∞); bh/t t ∈ [b,∞),

where a, b, h are positive constants with a < b.

O a

h

O b

h
y = bh / t

y = ah / t

Compare their outputs after time t:

b+t∫

b

bh

τ
dτ −

a+t∫

a

ah

τ
dτ =

a+t∫

b

(b − a)h

τ
dτ +

b+t∫

a+t

bh

τ
dτ −

b∫

a

ah

τ
dτ

= (b − a)h ln
a + t

b
+ bh ln

b + t

a + t
− ah ln

b

a

= (b − a)h ln
a + t

b
+ bh ln

b/t + 1

a/t + 1
︸ ︷︷ ︸

→ln 1=0 as t→∞

−ah ln
b

a

→ ∞ as t → ∞;

the later ‘good thing’ always has infinitely more force than the earlier ‘good thing’ no

matter how close their starts.

MacLaurin rejected this model on the basis of Corollaries 3 and 4 and moved on to

one of exponential decay.

(ix) Case 2: geometric decrease with arithmetic increase of time (cf. (iii))

This corresponds to dF
dt

= ke−αt, where k, α are positive constants. The total force

over the infinite interval starting at t is then
∫

∞

t

ke−ατdτ =
k

α
e−αt . (δ)

As MacLaurin notes, the fluxions of the forces are as (proportional to) the forces them-

selves. Moreover,
ke−αtn+1

ke−αtn

= e−α(tn+1−tn) ,
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so that, if the tn are in arithmetic progression, then the corresponding (accelerating)

forces are in geometric progression. Likewise, the total forces (δ) are in geometric

progression.

In Corollary 1 MacLaurin uses the area result already noted (see (iv) above) to

equate the total force for an infinite time interval with a related finite, uniform process.

For Corollary 2 we note from (δ) that

Total force from t1 → ∞
Total force from t2 → ∞ =

e−αt1

e−αt2
=

ke−αt1

ke−αt2
=

dF
dt

at t1
dF
dt at t2

.

While MacLaurin was happier with this hypothesis, he did not like the fact that the

forces could never vanish in finite time. This led him on to his final model which involves

the second derivative.

(x) Case 3: power decrease of the accelerating force

Here we consider v = dF
dt

and set dv
dt

= −cvα, where c is a positive constant and α is a

constant. If α = 1 we come back to Case 2; otherwise we obtain from v−α dv
dt = −c that

v−α+1

−α + 1
= −ct + k , and so v = ((1 − α)(k − ct))

1/(1−α)
.

For v to vanish at some finite time we need 1/(1 − α) > 0, that is to say, α < 1;

moreover, α < 0 makes | dv
dt | decrease as |v| increases and α = 0 makes dv

dt constant,

neither of which MacLaurin admits. He therefore requires 0 < α < 1 and settles on

α = 1
2 as the mean value. Thus we consider

v = 1
4
(k − ct)2 .

Setting v(0) = a makes (14) k = 2
√

a and choosing (15) v′(0) = −1 gives us − 1
2ck = −1,

or c = 1/
√

a. We now have

v =
1

4

(

2
√

a − t√
a

)2

,

(14) The negative root will not allow v to vanish in positive time.

(15) As noted before, constants of proportionality can usually be chosen arbitrarily and

it would be natural to ‘normalise’ by dividing by the initial value a1/2 of v1/2. MacLaurin

does this right at the start by taking his fluxional equation as

v̇√
v

=
ṫ√
a

.

Note that he does not have the minus sign, but this is presumably implicit in ṫ to ensure

decrease.
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or 4av = (2a − t)2, which is MacLaurin’s solution. The above discussion is valid for

0 ≤ t ≤ 2a.

O

M

F

Q

P tB

E

v

a

2a

The equation 4av = (2a − t)2 defines the parabola with vertex B at t = 2a, v = 0 and

focus F at t = 2a, v = a; it crosses the v-axis at E, where t = 0, v = a.

For the upper part of the standard parabola y2 = 4ax we have

∫ c

0

y dx =

∫ c

0

2
√

a
√

x dx = 4
3

√
a c3/2 = 2

3
c × 2

√
ac = 2

3
OC × CT ,

where O is the origin (vertex), C is the point (c, 0) (c ≥ 0) and T is the point (c, 2
√

ac)

on the curve. MacLaurin applies this geometric result to get the (curvilinear) area BQM

equal to 2
3

BQMP and then the area

BMP = BQMP − 2
3

BQMP = 1
3

BQMP = 1
3

PM × BP .

Moreover,

PM =
1

4a
(2a − t)2 =

BP2

4 × OE
so BMP =

BP3

12 × OE
.

This in turn gives

BEO =
BO3

12 × OE
and OEMP = BEO − BMP =

OB3 − BP3

12 × OE
.
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4. The second part of MacLaurin’s paper

As noted in the Introduction the second part of MacLaurin’s manuscript is concerned

with Propositions 21 and 22 and their Scholium from Book II of Newton’s Principia

([13], [14]). These occur in a section on density and compression of fluids and hydrostat-

ics. To help show the connection with MacLaurin’s results I begin with a translation of

these propositions and of Newton’s definition of a fluid. This is followed by my trans-

lation of the second part of MacLaurin’s manuscript. Finally I have appended a short

commentary on its contents.

Definition. A fluid is any body whose parts yield to any applied force, and moves

easily within itself by yielding.

Proposition 21. Let the density of a certain fluid be proportional to the compres-

sion and let its parts be drawn downwards by a centripetal force reciprocally proportional

to their distances from the centre: I say that, if those distances are taken to be continu-

ally proportional, the densities of the fluid at the same distances will also be continually

proportional.

Proposition 22. Let the density of a certain fluid be proportional to the com-

pression and let its parts be drawn downwards by gravity reciprocally proportional to

the squares of their distances from the centre: I say that, if the distances are taken in

musical progression, (16) the densities of the fluid at these distances will be in geometric

progression.

Each proposition has a corollary showing how the density at any point can be obtained

if the density is given at two points; a hyperbola is used in the corollary to Proposition

21 (cf. MacLaurin’s §IV, §V below). In the Scholium Newton indicates what happens

under other assumptions about the gravity, some of which are implicit in MacLaurin’s

general result. Here is a translation of the second part of Maclaurin’s manuscript.

Second proposition

Everywhere about the point S let any fluid lie, gravitating to it with centripetal

forces which are at the distances SC, Sc, SA as CV, cv, AH, ordinates of the curve HVK.

Let that fluid be compressed by forces which are as FC, fc, AB at the same distances

SC, Sc, SA: let B be a point in which the curve cuts AB at an angle of 45◦, where

AB = AS. Let

AS = e , AH = a , CV = c , AC = x , FC = F .

Let the density of the fluid at A = b, at C = D.

(16) See the Commentary below (after equation (9)).
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T
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b
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Since the increment of the compressing force is the weight of the increment of the

superincumbent fluid and since the weight of this increment is as its quantity of material

and the accelerating force combined, or as the density of its mass and the accelerating

force, i.e., as D × c×−ẋ, the increment of the compressing force or Ḟ will be as −Dcẋ

and Bo (its increment at distance SA) will be as ab × ob, therefore

Ḟ : Bo :: −Dcẋ : ab × bo ,

therefore

Ḟ =
−Dcẋ × Bo

ab × bo
= (since Bo = bo)

−Dcẋ

ab
.

Corol. I. The specific gravity of the fluid at C is to its specific gravity at A as FC to

the subtangent CT. For the specific gravity of the fluid is the weight of a given amount,

and so compositely as the density and the accelerating force: and consequently

the specific gravity at C is to that at A :: Dc : ab :: Ḟ : ẋ :: FC : CT .

Corol. II. Since

CT =
−FC × ẋ

Ḟ
=

−Fab

Dc
,

CT is negative, and so BF is convex to the axis SK.

§II. Let the density be supposed proportional to the compression or F = D and

Ḟ = Ḋ =
−Dcẋ

ab
= (b = e) =

−Dcẋ

ae
,

and ∗

F −Ḋ

D
= F cẋ

ae
, therefore

AHVC

ae
= L, D .

∗ Note. Here F denotes the fluent quantity. (MacLaurin’s footnote)
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(Note. L denotes the logarithm.)

Corol. I. If the areas AHVC are taken in arithmetic progression, the densities will

be in geometric progression.

Corol. II. The subtangents of the curve BF are reciprocally as the centripetal forces,

for

CT =
Dẋ

−Ḋ
=

ae

c
, or as

1

c
.

Corol. III. If F = D the ordinates of the curve BF will be as the densities.

§III. Ex I. Let the centripetal force be constant or c = a and

Ḋ =
−Dcẋ

ae
=

−Dẋ

e
and

−Ḋ

D
=

ẋ

e
,

from which it is clear that the curve BF is logarithmic, drawn with asymptote SK and

subtangent e.

Corol. I. If the distances are taken in arithmetic progression, the densities will be

in geometric progression.

Corol. II. The specific gravities of the fluid will be in the same progression (namely,

geometric), for, on account of the given centripetal force, the specific gravity is as the

density.

S

B

T

F

AE

Q

N

G K

VC

Corol. III. The quantity of superincumbent fluid in any column CFGK, however

much it may fill up the infinite space, is nevertheless finite. For the quantity above the

base FC is equal to the homogeneous quantity which the tube FCTN of density CF

would contain. And the quantity between A and C above the base AB is equal to the

homogeneous quantity BEQF of density AB.
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Corol. IV. If the distances are taken in arithmetic progression, the superincumbent

quantities of fluid will be in geometric progression, for

GFCK = FC × TN , or as FC .

§IV. Ex II. Let the centripetal force be reciprocally as the distance, or c =
ae

e + x
,

and so

−Ḋ =
Deẋ

e × e + x
=

Dẋ

e + x
,

therefore

−eḊ − xḊ = Dẋ , and − eḊ = Dẋ + xḊ ,

therefore by finding the fluent quantities

e2 − eD = Dx , and e2 = Dx + eD = D × e + x ,

from which it is clear that the curve BF is the equilateral hyperbola drawn with centre

S and asymptotes SK, SO.

Corol. I. If the distances are taken in geometric progression, the densities, the

compressing forces and the centripetal forces will be in the same progression and they

are all mutually proportional.

Corol. II. The densities are reciprocally as the distances.

S

K

CF

A

O

G

B

Corol. III. The total quantities of material in the infinite column CKGF are infinite.

For if the distances are taken in geometric progression, the quantities of material in a

given column will be in arithmetic progression.

Corol. IV. The specific gravities of the fluid are reciprocally as the squares of the

distances, for they are as Dc =
1

e + x 2
.
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Schol. And in this hypothesis this is the thing most deserving to be noted, that

in it alone the density (and so the compressing force or even the specific gravity of the

fluid) can be as some power of the distance if F = D. For if D =
em+1

e + x m
there will be

Ḋ =
−mem+1ẋ

e + x m+1
=

−Dcẋ

ae
=

−em+1cẋ

ae × e + x m
,

therefore
mẋ

e + x
=

cẋ

ae
, therefore c =

mae

e + x
,

or reciprocally as the distance.

§V. Universally let

c =
aen

e + x n
and − Ḋ =

Denẋ

e × e + x n
.

Therefore

F −Ḋ

D
=

−en−1

n − 1 × e + x n−1
+

en−1

n − 1 × en−1

=
n − 1 × e + x n−1 − n − 1 × en−1

n − 1 2 × e + x n−1
=

e + x n−1 − en−1

n − 1 × e + x n−1

= −L, D .

Corol. I. Therefore if the 1 − n power of the distance is taken in arithmetic pro-

gression, the densities will be in geometric progression.

Corol. II. Let the centripetal force be directly as the distance and let n = −1,

therefore 1 − n = 2, and so, if the squares of the distances are taken in arithmetic

progression, the densities will be in geometric progression and the equation of the curve

BF will be
−Ḋ

D
=

e + x × ẋ

e2
,

which can be constructed thus by means of the hyperbola. (17)

C

L B

Q
q

p

P

A cS

F f

(17) MacLaurin’s diagram shows the constructed curve as concave up. I believe it should

be as I have drawn it. See discussion below (equation (7)).
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Let the equilateral hyperbola LQ be drawn with centre S and let SB = e = SA = LB.

Let us take SC =
√

2 BLQP and FC = SP; the curve passing through all points found

in this way will be BF, the curve requiring to be constructed. For

QP =
SB2

SP
=

e2

D
and QPpq =

−Ḋe2

D
= e + x × ẋ = SC × Cc ,

therefore
−Ḋ

D
=

e + x × ẋ

e2
,

which was the equation requiring to be constructed.

Note. The subtangent of this curve is reciprocally as the distance.

Corol. III. Let the centripetal force be reciprocally as the square of the distance,

or c =
ae2

e + x 2
. There will be n = +2 and 1 − n = −1, therefore, if quantites recipro-

cally proportional to the distances are taken in arithmetic progression, or the distances

themselves in musical progression, the densities will be in geometric progression; and

the equation of the curve will be

−Ḋ

D
=

eẋ

e + x 2
.

This can also be easily constructed by means of the hyperbola.

VI. Now let the compressing force be supposed proportional to some power of the

density, or

F = Dm and Ḟ = mDm−1Ḋ =
Dcẋ

ae
.

Therefore

mDm−2Ḋ =
cẋ

ae
and

mDm−1

m − 1
= F cẋ

ae
,

or Dm−1 is as the area AHVC.

Further let c =
aen

e + x n
and there will be mDm−1Ḋ =

en−1ẋ

e + x n
, therefore

m

m − 1
Dm−1 =

−en−1

n − 1 × e + x n−1
(if b is the density at distance e)

+
mbm−1

m − 1
+

1

n − 1
,

m

m − 1
Dm−1 =

mbm−1

m − 1
+

1

n − 1
− en−1

n − 1 × e + x n−1
.
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Corol. I. If m = n the curve whose ordinates are as the densities will be a conical

hyperbola and the density will be reciprocally as the distance.

Commentary. MacLaurin first sets up the fluxional equation

Ḟ = −Dcẋ

ab
, (1)

where F (compressing force), D (density), c (centripetal force) are functions of x (dis-

tance from a specially chosen initial point A) and a, b are the values of c, D respectively

at A (x = 0). MacLaurin’s instruction to ‘let B be a point in which the curve cuts AB

at an angle of 45◦, where AB = AS’ is equivalent to requiring

F (0) (= AB) = e , F ′(0) = −1 . (2)

At first these requirements seem arbitrary and restrictive, but I believe that they involve

simply changing vertical and horizontal scales or physical units: having chosen A, put

x = αξ, y = βη in y = F (x) to get

η =
1

β
F (αξ) ,

dη

dξ
=

α

β
F ′(αξ) ;

clearly, we may choose α, β to make η = e and dη
dξ

= −1 when ξ = 0 (provided

F (0) 6= 0, F ′(0) 6= 0). The changes will not affect the proportional relationships in

which MacLaurin is interested and so there is no loss of generality in assuming (2). Not

being an expert in fluids I will not comment further on the derivation of equation (1).

Maclaurin uses the term subtangent in sev-

eral places. This refers to CT as shown in the di-

agram, where the tangent to the curve y = f(x)

at the point F meets the axis in T and C is the

projection of F on the same axis. A simple calcu-

lation shows that the signed length CT is given

by

C

F

T

CT = − f(xF )

f ′(xF )
. (3)

This is equivalent to the expression used by MacLaurin in Corollary II of the first

section.
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Under the assumption that D is proportional to F , which MacLaurin takes in §II
as D = F , (18) implying that b is equal to the distance AS denoted by e, (19) equation

(1) becomes

Ḋ

D
= −cẋ

ae
. (4)

We therefore have

ln D = − 1

ae

∫ x

0

c dx + ln e , (5)

and

D = e exp
(
− 1

ae

∫ x

0

c dx
)
. (6)

Equation (5) is MacLaurin’s equation

AHVC

ae
= L, D

in §II if we interpret L, D as ln(D/e).

In §III MacLaurin takes c to be constant (c = a), a case which Newton says in his

Scholium was investigated by Halley. Here we have from equation (6)

D = e exp
(
− x

e

)
,

and from equation (3) we see that in this case the subtangent is always e as MacLaurin

states. Note that in Corollary III MacLaurin is using the area result discussed in

Section 3 (iv).

The case of c varying ‘reciprocally as the distance’ is considered in §IV. Now

c =
ae

e + x
(recall: c(0) = a) ,

and from equation (6)

D = e exp
(
−

∫ x

0

1

e + x
dx

)
=

e2

e + x
,

so that we have a rectangular hyperbola

D(e + x) = e2 .

(18) This may be thought of as another change of units and again we note that, since

MacLaurin is only concerned with proportional relationships, it is of no consequence.

(19) N.B. This is not to be confused with the number e = exp 1.
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The general power case

c =
aen

(e + x)n
(n 6= 1)

is discussed in §V. We now have from equation (6)

D = e exp
(

− en−1

∫ x

0

1

(e + x)n
dx

)

= e exp
( en−1

n − 1

( 1

(e + x)n−1
− 1

en−1

))

= e exp
(en−1 − (e + x)n−1

(n − 1)(e + x)n−1

)

. (7)

In Corollary II of §V MacLaurin discusses the case n = −1, for which we obtain

from equation (7)

D = e exp
(

− 1

2e2
(x + e)2 +

1

2

)

= e exp
(1

2

)

exp
(

− 1

2e2
(x + e)2

)

. (8)

Although his lack of notation prevented him from providing an explicit formula here,

MacLaurin nevertheless attempted to construct the solution curve.

C

L B

Q

P

AS

F

Y

X

( −e , e )

e , 0)(

, e )( 0

Introducing coordinate axes in MacLaurin’s diagram as shown, we have for his hyperbola

(LQ) the equation XY = −e2 and, if Q is the point (X, Y ) on this curve (X ≤ −e), the

area BLQP is
∣
∣
∣
∣

∫ e

Y

−e2

Y
dY

∣
∣
∣
∣
= e2 ln

e

Y
.

The point F is then, according to MacLaurin’s recipe,

(√
2 e

(

ln
e

Y

)1/2

, Y
)

,

and its locus is therefore the curve with equation

X =
√

2 e
(

ln
e

Y

)1/2

,

from which we obtain

ln
e

Y
=

1

2e2
X2 , and therefore Y = e exp

(

− 1

2e2
X2

)

.
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In MacLaurin’s notation X = x + e, so we have apparently

D = e exp
(

− 1

2e2
(x + e)2

)

. (9)

This is equation (8) without the constant factor exp(1/2). Of course, the value of Ḋ/D

is the same in both cases and we have seen that, since MacLaurin was interested in

proportional relationships, the actual constants of proportionality are largely irrelevant.

On the other hand, MacLaurin may simply have overlooked the fact that he wanted

D = e when x = 0 and not when X = 0.

Corollary III of §V deals with the case n = 2, for which (from equation (7))

D = e exp
( −x

e + x

)

= e exp
( e

e + x
− 1

)

. (10)

Also in this corollary MacLaurin takes the distances in musical progression, a condition

which is imposed in Newton’s Proposition 22 and is also known as harmonic progression.

It is that, if d1 < d2 < d3, then
d3

d1
=

d3 − d2

d2 − d1
,

in which case
1

d3
− 1

d2
=

d2 − d3

d2d3
=

d1 − d2

d1d2
=

1

d2
− 1

d1
;

thus the reciprocals are in arithmetic progression and conversely. With this observation

MacLaurin’s assertion that, if the distances (i.e. x+e) are taken in musical progression,

then the densities are in geometric progression follows immediately from equation (10)

and the properties of the exponential function.

Finally, in §VI MacLaurin replaces the hypothesis F = D with F = Dm (m 6= 1),

some particular cases of which are mentioned in Newton’s Scholium. Equation (1) now

becomes

mDm−1Ḋ = −Dcẋ

ab
, or mDm−2Ḋ = −cẋ

ab
. (11)

At this point MacLaurin appears to go wrong: the − does not appear and b and e are

still taken as equal – perhaps we should now have e = bm. We obtain from equation

(11) (with e = bm)

m

m − 1
Dm−1 = − 1

ab

∫ x

0

c dx +
m

m − 1
bm−1 =

1

b

( me

m − 1
− 1

a

∫ x

0

c dx
)

.

Then with c =
aen

(e + x)n
(n 6= 1) this becomes

m

m − 1
Dm−1 =

1

b

( me

m − 1
+

en

(n − 1)(e + x)n−1
− e

n − 1

)

. (12)
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In the Corollary we have m = n in which case equation (12) becomes

bmDm−1 = (m − 1)e +
em

(e + x)m−1
. (13)

Clearly, neither this nor MacLaurin’s version represents a conical hyperbola unless m =

2, so what does MacLaurin mean when he appears to assert that his equation does so

in general? If we put

X = Dm−1 − (m − 1)e

bm
, Y = (e + x)m−1 ,

we obtain from equation (13)

XY =
em

bm
,

which does define a rectangular hyperbola; perhaps this is what he had in mind. Alter-

natively, he may have read erroneously the constants in his version of equation (12) as

cancelling out when m = n; then he would have had

D(e + x) = constant .
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5. MacLaurin’s Latin text

De Viribus Mentium Bonipetis

Mentes nostrae omnem bonitatis apparentis particulam in bono quovis appetentes, ad

ipsum bonum necessario feruntur, vi quae est summa virium quibus singulae ejus par-

ticulae appetuntur. Sed si aequalibus viribus aequales partes appetantur, sive eadem sit

omnium vis bonipeta acceleratrix; summa virium quibus boni cujusvis partes appetun-

tur, erit ut summa partium sive ut quantitas bonitatis in isto bono: & proinde, vires

quibus mentes nostrae in diversa bona feruntur, sunt (caeteris paribus) ut quantitates

bonitatis in istis bonis. Ut igitur istarum virium rationes assequamur, ipsorum bonorum

quantitates sunt prius eruendae.

C

M

D

A BP

Repraesentet igr linea recta AB boni durationem, ad cujus singula puncta P erig-

antur normales PM, quae sint ut boni intensiones (i.e. bonitates instantaniae) ad finem

temporis AP, & si AD sit intensio qua bonum incipit, & BC qua desinit existere, tunc

bonum totale durationis AB erit ut area ADCB. Nam bonum totale, est summa boni-

tatum instantaniarum sive ut summa ordinatarum PM, atque adeo ut area curvilinea

ADMCB vel si intensio PM appelletur I & bonum quod praeteritum est tempore AP

dicatur B, & tempus AP t erit ex ipsa intensionis def :

Ḃ

ṫ
= I , Ḃ = Iṫ & B = F Iṫ = ADMP ,

ergo bonum durationis AB = ADCB. Si pro intensionibus & durationibus realibus PM &

AP, substituantur intensiones & durationes apparentes, ope hujus prop. inveniri potest

boni quantitas apparens.

Not: haec malis facile applicari posse atque alia etiam quae sequuntur.

Ope hujus prop. boni vel mali cujusvis intensio maxima vel minima, per vulgares

maximorum & minimorum methodos inveniuntur, nam ubi PM e ordinata maxima vel

minima intensio est ejusdem ordinis. Quod si bonum non sit continuum, sed aliqua

intercedat temporis distantia inter diversas ejus partes, respici potest tanquam aggrega-

tum diversorum minorum bonorum quorum singulae per hanc prop. inventae & simul

additae id conficiunt.

Porro hinc patet, plurima bona quorum durationes sunt infinitae, ipsa esse finita;

plurimae enim extant areae curvilineae in infinitum porrectae sive infinité longae, quae
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tamen sunt finitae. Hujusmodi est area inter cissoidem ejusque asymptoton atque in-

ter hyperbolas cujuscunque dignitatis (excepta sola conica) eorumque asmyptotes. Sed

specialius si boni cujusvis intensiones decrescant in progressione geometrica dum tem-

pora crescunt in arithmetica erit in hoc casu curva DMC logarithmica vulgaris (vide

Figur. pag. 8) (20) & area infinita ADCB= ATED, supp. quod DT tangit curvam in D.

Bonum igitur hujusmodi infinitae durationis AB aequale est uniformi durationis AT,

intensionis AD constantis. Eodem modo si bonum quodvis uno die perceptum datam

habeat quantitatem sequenti ejus dimidiam tantum partem & ita perpetuo decrescat

ut bonum uno die perceptum sit dimidium precedentis & duplum sequentis: bonum

inquam totale hujusmodi per infinitos dies continuatum est tantum duplum boni quod

primo die percipiebatur, quod patet ex eo quod

1 +
1

2
+

1

4
+

1

8
+

1

16
+

1

32
&c: = 2 .

Si boni intensiones a nihilo exordium sumentes uniformiter crescant, erunt inten-

siones durationibus directé proportionales, & ipsa bona ut durationum quadrata. Quod

si intensio sit ut durationis praeteritae potestas quaevis positiva, erunt tamen perpetuo

bona in ratione composita durationum & intensionum; & proinde si illorum durationes

sint infinitae erunt ipsa bona infinité infinita.

Bona etiam uniformia, quorum intensiones sunt invariabiles, sunt ut durationes &

intensiones conjunctim; quoniam fig ADCB nunc evadit parallelogrammum.

Q A B

H
O

CD

L

1◦, Hinc bonum hujusmodi cujus duratio est infinita erit ipsum infinitum. Hinc

2◦, infinité magis praestat hujusmodi infinité durantis boni intensionem vel maximé

exigua quantitate augere quam ejus durationem quam maxime prolongare; nam addendo

DL intensioni AD boni infiniti ADCB, augmentum infinitum DLOC ei adjungimus;

addendo autem AQ durationi infinitae AB fit incrementum finiti boni AQHD.

(20) The reference is to p. 8 of MacLaurin’s manuscript. Here the appropriate diagram

is on p. 32, but is reproduced below for convenience.

O A P B

D N

M
C

T

E Q
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Bonorum igitur virorum de miseriis hujus vitae querelas debet perimere consideratio

incrementi quod exinde intensioni faelicitatis futurae aeternae accedit, quo (forte) fit

ut eorum faelicitas tota simul sumpta major sit quam si ab initio eorum existentiae

exordium sumpsisset, & nunquam cecidisset homo. Intensionem autem augeri ex eo

satis patere videtur quod major sit gratitudo & quod quamplurimae virtutes exerceantur

quibus vix ullus esset locus si omnes homines innocentes sine ullis malis aut infortuniis

vitam agerent.

3◦, Ut duo hujusmodi bona sint aequalia debent intensiones esse durationibus reciproce

proportionales.

Haec de bonorum mensura in genere de quibus nonnihil specialius postea erit dicendum.

Hactenus vim bonipetam acceleratricem sive vim qua data pars boni appetitur

constantem ac ubique eandem supposuimus. Eam autem pro diversa temporis distantia

variari aliisque ex causis experientia docet. Supponatur bonum esse uniforme. Si in datis

PN sumantur PM viribus bonipetis acceleratricibus ad distantias OP proportionales, erit

area ADMP ut vis qua mens urgetur ad bonum APND.

O A P B

D N

M
C

Supponatur igitur imprimis vis bonipeta distantiae temporis reciproce esse propor-

tionalis, eritque curva DMC hyperbola Apollonia ad centrum O asymptotes OD, (21)

OB descripta. Hac in hyp.

1◦, Si durationes boni auctae distantia OA sumantur in progressione geometrica, erunt

vires quibus mens tendit ad illa bona in progressione arithmetica & vires acceleratrices

in progressione geometrica.

2◦, Bonum infinitae durationis vi infinita mentem ad se attrahit nam area hyperbolica

ADCB est infinita.

3◦, Secundum hanc hypothesin bona quae sunt ut distantiae temporum mentis ab iis,

aequaliter appetuntur. Sic ut bona quae sunt ut numeri 1, 2, 3, 4, 5, 6 ad temporum

distantias quae respectivé sunt ut 1, 2, 3, 4, 5, 6 aequaliter appetentur v.g. bonum

quodvis hora ab hac distans ejusque duplum duas post horas obtinendum aequaliter

secundum hanc hyp. appeterentur.

4◦, Vis in bonum praesens infinité major est vi in idem bonum vel minima distantia

remotum. Nec unquam ad ullam distantiam non infinitam est nulla.

(21) In MacLaurin’s diagram OD is certainly not an asymptote. Perhaps he means the

limiting position of OD as A → O.
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Atque haec duo posteriora Corollaria me movent ut existimem hanc hyp. non esse veram.

D

H KA

Q
I

M
O

Urgeatur mens nostra ad bonum quodvis presens vi ut AD; ad distantiam autem

AH, ut HI. Nunc supponatur vi ut AQ (= HI) presens bonum appetere & ad distantiam

AH id appetet vi quae sit ad AQ ::HI :AD, sive ut HM. Sed si HK sumatur = AH ob

easdem rationes sicut AQ (= HI) minuobatur in MH, nunc HI evadet OK (= MH); ita

ut AD, HI, KO sint continue proportionales; & sic deinceps unde probabile est vires

bonipetas acceleratrices decrescere in progressione geometrica si tempora crescant in

arithmetica.

Secundum hanc hypothesin decrementa virium sive fluxiones erunt ut ipsae vires

(patet ex Lemm Imo Lib 2di Princip. Neutoni). Quae hyp. malitiae ac diligentiae Temp-

tatoris est satis consentanea, qui verisimiliter majorem adhibet operam ad vim cohiben-

dam quo major est; unde nonnihil verisimile est Satanam conari hanc legem in mentibus

nostris stabilire saltem injicere dum bona vitae futurae consideramus.

Haec hypothesis experientia nonnihil confirmatur: nam excessus vis in bonum hora

ab hoc instante distans, supra vim in bonum duas post horas obtinendum, major est

excessu vis in bonum anno remotum, supra vim in bonum post annum & horam obtinen-

dum. De hac differentia non sumus adeo soliciti quam de illa unde patet vim bonipetam

acceleratricem non uniformiter decrescere, ita ut quaevis temporis particula eandem

quantitatem ex ea auferat. Sed potius celerius decrescere dum major est, & tardius

quum minor evadit; ita ut decrementum vis sit ut ipsa vis vel aliqua ejus potestas.

O A P B

D N

M
C

T

E Q

Hac igitur posita: (22)

1◦, Quoniam area ADCB= ADET erit vis in bonum infinitum ADEQBA aequalis vi in

bonum ATED & vis AD continuetur uniformis propter tempus AT. Vis igr qua bonum

infinitum secundum hanc legem appetitur, est finita & temporariis & finitis bonis ae-

quari, vel etiam vinci potest. Atque hinc prodiit modus solvendi phaenomenon insigne:

(22) The above diagram is the one to which MacLaurin refers earlier as being on page 8.

The line DT is tangent to the curve at D.
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nim. quod plurimi qui virtutem bonum infinitum post se trahere opinare videntur, vitia

tamen sequuntur.

A B

D C

2◦, Vires in diversa infinita bona ADQB, PNQB sunt, ut vires in eorum principiis

AD, PN, & in universum vis in bonum quodvis ad unam distantiam (nim. ADBC) est

ad vim in idem ad aliam distantiam, ut vis in principio ejus ad primam distantiam

ad vim in principio ad alteram distantiam: & si illud bonum disponatur in distantiis

diversis arithmeticé proportionalibus, erunt vires versus totum bonum in progressione

geometrica.

Sed hac sola difficultate laborat haec hypothesis, quod vis bonipeta ad solam dis-

tantiam infinitam evanescat & proinde in bonis hujus vitae obtinere non posse videtur.

Videamus igitur quam aliam vis bonipetae potentiam eligamus cui proportionalem ejus

decrementum statuamus. Eam non esse unitatem modo diximus, eam o superare uni-

tatem, ex eo constat, quod tum curva DMC esset hyperbolici generis, & proinde vis in

bonum praesens esset infinita, eam non esse negativam seu minorem 0, ex eo constat,

quod decrementum hoc sit majus quo major sit vis non quo minor, eam non esse ipsum

0, ex eo constat quod varietur hoc decrementum, nec perpetuo eadem sit. Neque igr

est 0, nec 1, nec major 1, nec minor 0, ergo est inter 0 & 1, quid restat igitur quam ut

medium inter 0 & 1 sumamus, nim. 1
2 . Sit igitur v̇ ut v1/2 sive

√
v. Supp. quod v est

vis bonipeta & t tempus durationis = OP, sit igitur

v̇ :
√

v :: ṫ :
√

a ergo
v̇√
v

=
ṫ√
a

(N. a est vis acceleratrix in praesens bonum), ergo fluentes inveniendo

2a − 2
√

av = t ergo
√

v =
2a − t

2
√

a
& 2a − t 2 = 4av .

O

E

M

F

Q

BP

Ergo si parametro 4a = 4 OE foco F axe BF, describatur parabola conica BME, erit

PM vis bonipeta acceleratrix ad distantiam OP. Hinc
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1◦, vis bonipeta ad distantiam finitam OB est nulla. Hinc

2◦, est vis bonipeta in duplicata ratione distantiae temporis a puncto in quo evanescit.

3◦, Quoniam area BQM est 2
3

BQMP erit

BMP =
1

3
BQMP =

1

3
PM × BP =

BP3

12 OE
,

sive ut BP3, ergo

OEMP =
OB3 − BP3

12 OE
.
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Prop. altera

Circa punctum S ubicunque jaceat fluidum quodvis ad id gravitans, viribus cen-

tripetis quae sint ad distantias SC, Sc, SA, ut CV, cv, AH, ordinatae curvae HVK.

Comprimatur illud fluidum viribus ut FC, fc, AB ad easdem distantias SC, Sc, SA: sit

B punctum in quo curva secat AB angulo 45◦, ubi AB = AS. Sit

AS = e , AH = a , CV = c , AC = x , FC = F .

Densitas Fluidi in A = b, in C = D.

v

S

B

K

T

CF
f

b

A H

V

o

c

Quoniam vis comprimentis incrementum est pondus incrementi fluidi superincum-

bentis, atque cum hujus incrementi pondus sit, ut ejus quantitas materiae & vis accel-

eratrix conjunctim, sive ut ejus densitas molis & vis acceleratrix i.e. ut D × c×−ẋ erit

vis comprimentis incrementum sive Ḟ ut −Dcẋ & Bo (ejus incrementum ad distantiam

SA) ut ab × ob ergo

Ḟ : Bo :: −Dcẋ : ab × bo

ergo

Ḟ =
−Dcẋ × Bo

ab × bo
= (quoniam Bo = bo)

−Dcẋ

ab
.

Corol. I. Specifica fluidi gravitas in C est ad specificam ejus gravitatem in A ut FC

ad CT subtangentem. Nam specifica fluidi gravitas est dati molis pondus, atque adeo

composité ut densitas & vis acceleratrix: & proinde

specifica gravitas in C ad eam in A :: Dc : ab :: Ḟ : ẋ :: FC : CT .

Corol. II. Quoniam

CT =
−FC × ẋ

Ḟ
=

−Fab

Dc

est CT negativa, adeoque BF convexa ad axem SK.
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§II. Supponatur densitas compressioni proportionalis seu F = D &

Ḟ = Ḋ =
−Dcẋ

ab
= (b = e) =

−Dcẋ

ae

& ∗

F −Ḋ

D
= F cẋ

ae
ergo

AHVC

ae
= L, D .

(N. L denotat logarithmum.)

Corol. I. Si areae AHVC sumantur in progressione arithmetica densitates erunt in

progressione geometrica.

Corol. II. Subtangentes curvae BF sunt reciproce ut vires centripetae nam

CT =
Dẋ

−Ḋ
=

ae

c
sive ut

1

c
.

Corol. III. F = D curvae BF ordinatae erunt ut densitates.

§III. Ex I. Sit vis centripeta constans seu c = a &

Ḋ =
−Dcẋ

ae
=

−Dẋ

e
&

−Ḋ

D
=

ẋ

e
,

unde patet curvam BF esse logarithmicam asymptoto SK subtangente e descriptam.

Corol. I. Si distantiae sumantur in progressione arithmetica erunt densitates in

progressione geometrica.

Corol. II. Specificae fluidi gravitates erunt in eadem progressione (nim. geometrica)

nam ob datam vim centripetam, est specifica gravitas ut densitas.

S

B

T

F

AE

Q

N

G K

VC

∗ Not. F hic denotat fluentem quantitatem.
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Corol. III. Quantitas fluidi superincumbentis in aliqua columna CFGK, quamvis

infinitum spatium repleat, est ipsa tamen finita. Nam quantitas supra basin FC aequalis

est quantitati homogeneae quam caperet tubus FCTN densitatis CF. Atque quantitas

inter A & C super basin AB aequalis quantitati BEQF homogeniae densitatis AB.

Corol. IV. Si distantiae sumantur in progressione arithmetica erunt superincum-

bentes fluidi quantitates in progressione geometrica nam

GFCK = FC × TN sive ut FC .

§IV. Ex II. Sit vis centripeta reciproce ut distantia seu c =
ae

e + x
atque adeo

−Ḋ =
Deẋ

e × e + x
=

Dẋ

e + x
,

ergo

−eḊ − xḊ = Dẋ & − eḊ = Dẋ + xḊ ,

ergo fluentes quantitates inveniendo

e2 − eD = Dx , & e2 = Dx + eD = D × e + x ,

unde patet curvam BF esse hyperbolam aequilateram, centro S asymptotis SK, SO

descriptam.

Corol. I. Si distantiae sumantur in progressione geometrica, erunt densitates, vires

comprimentes & centripetae in progressione eadem suntque omnes sibi mutuo propor-

tionales.

Corol. II. Densitates sunt reciproce ut distantiae.

S

K

CF

A

O

G

B
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Corol. III. Quantitates totales materiae in columna infinita CKGF sunt infinitae.

Quod si sumantur distantiae in progressione geometrica erunt quantitates materiae in

data columna in progressione arithmetica.

Corol. IV. Specificae fluidi gravitates sunt reciproce ut quadrata distantiarum nam

sunt ut Dc =
1

e + x 2
.

Schol. Atque hac in hyp. hoce est maxime notatu dignum quod in ea sola densitas

(atque adeo vis comprimens vel etiam specifica fluidi gravitas) si F = D potest esse ut

quaevis potentia distantiae. Si enim D =
em+1

e + x m
erit

Ḋ =
−mem+1ẋ

e + x m+1
=

−Dcẋ

ae
=

−em+1cẋ

ae × e + x m
,

ergo
mẋ

e + x
=

cẋ

ae
, ergo c =

mae

e + x
,

sive reciproce ut distantia.

V. Sit universaliter

c =
aen

e + x n
& − Ḋ =

Denẋ

e × e + x n
,

ergo

F −Ḋ

D
=

−en−1

n − 1 × e + x n−1
+

en−1

n − 1 × en−1

=
n − 1 × e + x n−1 − n − 1 × en−1

n − 1 2 × e + x n−1
=

e + x n−1 − en−1

n − 1 × e + x n−1

= L, D .

Corol. I. Ergo si 1−n potestas distantiae sumatur in progressione arithmetica erunt

densitates in geometrica.

Corol. II. Sit vis centripeta directe ut distantia & n = −1 ergo 1 − n = 2 atque

adeo si quadrata distantiarum sumantur in progressione arithmetica erunt densitates in

geometrica & curvae BF aequatio erit

−Ḋ

D
=

e + x × ẋ

e2
,

quae ope hyperbolae sic construi potest. (23)

(23) MacLaurin’s diagram shows the constructed curve as concave up. I believe it should

be as I have drawn it. See discussion in Section 4 (equation (7)).
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C

L B

Q
q

p

P

A cS

F f

Describatur hyperbola aequilatera LQ centro S & sit SB = e = SA = LB. Sumatur

SC =
√

2 BLQP, capiatur FC = SP; curva transiens per omnia puncta similiter inventa

erit BF curva construenda, nam

QP =
SB2

SP
=

e2

D
& QPpq =

−Ḋe2

D
= e + x × ẋ = SC × Cc ,

ergo

−Ḋ

D
=

e + x × ẋ

e2
,

quae erat aequatio construenda.

N. Hujus curvae subtangens est reciproce ut distantia.

Corol. III. Sit vis centripeta reciproce ut quadratum distantiae seu c =
ae2

e + x 2
.

Erit n = +2 & 1 − n = −1 ergo si quantitates reciproce proportionales distantiis

sumantur in progressione arithmetica vel ipsae distantiae in progressione musica erunt

densitates in progressione geometrica; & curvae aequatio

−Ḋ

D
=

eẋ

e + x 2
.

Quae etiam facile ope hyperbolae construi potest.

VI. Supponatur nunc vis comprimens densitatis potestati cuilibet proportionalis

seu

F = Dm & Ḟ = mDm−1Ḋ =
Dcẋ

ae
,

ergo

mDm−2Ḋ =
cẋ

ae
&

mDm−1

m − 1
= F cẋ

ae
,

seu Dm−1 ut area AHVC.
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Sit porro c =
aen

e + x n
eritque mDm−1Ḋ =

en−1ẋ

e + x n
, ergo

m

m − 1
Dm−1 =

−en−1

n − 1 × e + x n−1
(si b sit densitas ad distantiam e)

+
mbm−1

m − 1
+

1

n − 1
,

m

m − 1
Dm−1 =

mbm−1

m − 1
+

1

n − 1
− en−1

n − 1 × e + x n−1
.

Corol. I. Si m = n erit curva cujus ordinatae sunt ut densitates hyperbola conica

& densitas reciproce ut distantia.
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III Finis.Finis.Finis. TTT

(9 November 2008)

Minor Revision, July 2018. I am grateful to Professor David Horowitz for his com-

ments. In particular, on p. 15 a term had been omitted in my discussion of MacLaurin’s

Corollary 4; this has now been rectified.
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