References for Takebe Katahiro

Version for printing
  1. Biography in Encyclopaedia Britannica.
    http://www.britannica.com/biography/Takebe-Katahiro

Books:

  1. H Fukagawa and T Rothman, Sacred Mathematics : Japanese Temple Geometry (Princeton University Press, Princeton, 2008).
  2. A Horiuchi, Les Mathematiques Japonaises a L'Epoque d'Edo (1600-1868): Une Etude des Travaux de Seki Takakazu (?-1708) et de Takebe Katahiro (1664-1739) (Vrin, Paris, 1994).
  3. K Sato, Takebe Katahiro's Sanreki Zakko - Table of trigonometric functions (first in Japan) (Japanese) (Kenseisha, 1995).
  4. D E Smith and Y Mikami, A History of Japanese Mathematics (Open Court Publishing, Chicago, 1914).

Articles:

  1. K Chemla, Review: A Horiuchi, Les Mathematiques Japonaises a L'Epoque d'Edo (1600-1868): Une Etude des Travaux de Seki Takakazu (?-1708) et de Takebe Katahiro (1664-1739), Isis 87 (3) (1996), 548-549.
  2. M Fujiwara, On the Sanreki Zakko presumably written by Takebe Katahiro, Studies of history of Japanese mathematics (Japanese) 1 (1945), 84-92.
  3. A Horiuchi, La science calendérique de Takebe Katahiro (1664-1739), Historia Sci. 33 (1987), 3-24.
  4. D Nagy, Review: A Horiuchi, Les Mathematiques Japonaises a L'Epoque d'Edo (1600-1868): Une Etude des Travaux de Seki Takakazu (?-1708) et de Takebe Katahiro (1664-1739), Monumenta Nipponica 50 (4) (1995), 586-590
  5. M Morimoto, Differentiation and Integration in Takebe Katahiro's Mathematics, Sixth International Symposium on the History of Mathematics and Mathematical Education Using Chinese Characters (University of Tokyo, 2005), 131-143.
  6. M Morimoto, Takebe Katahiro's algorithm to find the circular arc length, International Conference on History of Mathematics in Memory of Seki Takakazu (1642?-1708) (University of Tokyo, 2008).
  7. M Morimoto and T Ogama, Katahiro Takebe's mathematics on three formulas especially related to inverse trigonometric functions (Japanese), Sugaku 56 (3) (2004), 308-319.
  8. M Morimoto and T Ogama, The mathematics of Takebe Katahiro: his three formulas of an inverse trigonometric function, Sugaku Expositions 20 (2) (2007), 237-252.
  9. T Murata, Wallis' Arithmetica infinitorum and Takebe's Tetsujutsu sankei : what underlies their similarities and dissimilarities?, Historia Sci. 19 (1980), 77-100.
  10. T Murata, Sur le Tetsujutsu sankei de Takebe et comparaison avec Arithmetica infinitorum de Wallis, in Faire de l'histoire des mathématiques: documents de travail, Marseille, 1983 (Soc. Française Hist. Sci. Tech., Paris, 1987), 11-22.
  11. T Murata, Mathematics of Takebe Katahiro and his thought 1 (Japanese), Sugaku Semina, Nihon Hyoronsha (August 1982), 70-75.
  12. T Murata, Mathematics of Takebe Katahiro and his thought 2 (Japanese), Sugaku Semina, Nihon Hyoronsha (September 1982), 69-75.
  13. T Murata, Mathematics of Takebe Katahiro and his thought 3 (Japanese), Sugaku Semina, Nihon Hyoronsha (October 1982), 62-67.
  14. T Murata, Mathematics of Takebe Katahiro and his thought 4 (Japanese), Sugaku Semina, Nihon Hyoronsha (November 1982), 63-69.
  15. T Murata, Mathematics of Takebe Katahiro and his thought 5 (Japanese), Sugaku Semina, Nihon Hyoronsha (December 1982), 60-64.
  16. T Murata, Mathematics of Takebe Katahiro and his thought 6 (Japanese), Sugaku Semina, Nihon Hyoronsha (January 1983), 76-81.
  17. T Ogawa, On a Calculation of an Extremum by Takebe Katahiro (Japanese), Yokkaichi University Journal of Environmental and Information Sciences 2 (2) (1999), 247-267.
  18. T Ogawa, On a Calculation of an Extremum by Takebe Katahiro (Japanese), Studies on the history of mathematics (Japanese) (Kyoto, 1998), 129-147.
  19. T Ogawa, The beginnings of enri - the calculation of pi by Katahiro Takebe (Japanese), Study of the history of mathematics (Japanese) (Kyoto, 1997), 77-97.
  20. K Sato, On the theory of regular polygons in traditional Japanese mathematics: reconstruction of the process for the calculation of the degree of Kaih_shiki appearing in the Taisei Sankei by Seki and Takebe brothers, Historia Sci. (2) 8 (1) (1998), 71-85.
  21. K Sato, Studies on Takebe Katahiro's Kenki Sanpo (Japanese), Kagakushi Kagakutetsugaku 13 (1996), 26-40.
  22. Ogawa Tsukane, Theories of circles originated by Seki and Takebe Katahiro, International Conference on History of Mathematics in Memory of Seki Takakazu (1642?-1708) (University of Tokyo, 2008).
  23. Z Xu, Takebe Katahiro and Romberg algorithm, Historia Sci. (2) 9 (2) (1999), 155-164.
  24. Z Xu, Takebe Katahiro's epistemology of mathematics (Chinese), Stud. Hist. Nat. Sci. 21 (3) (2002), 232-243.
  25. Z Xu and C Zhou, Standing on the Shoulders of a Giant - Influence of Seki Takakazu on Takebe Katahiro's mathematical achievements, International Conference on History of Mathematics in Memory of Seki Takakazu (1642?-1708) (University of Tokyo, 2008).
  26. H Yokotsuka, The Enri Kohai-jutsu Preserved in Natural History Museum and Institute, Chiba (Japanese), Journal of history of science, Japan, Series II 43 (232) (2004), 204-210.
  27. C Zhou and J K Zhang, Takebe's mathematical thought and methodology, Stud. Hist. Nat. Sci. 27 (2) (2998), 213-226.

JOC/EFR July 2009

The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/References/Takebe.html