References for Joseph Bertrand

Version for printing
  1. D J Struik, Biography in Dictionary of Scientific Biography (New York 1970-1990).
    http://www.encyclopedia.com/doc/1G2-2830900425.html

Books:

  1. A I Dale, A history of inverse probability : From Thomas Bayes to Karl Pearson (Second edition), Sources and Studies in the History of Mathematics and Physical Sciences (Springer-Verlag, New York, 1999).
  2. H Gispert, La France mathématique : La Société mathématique de France (1872-1914), Cahiers d'Histoire et de Philosophie des Sciences. Nouvelle Série 34 (Société Française d'Histoire des Sciences et des Techniques, Paris; Société Mathématique de France, Paris, 1991).
  3. M Zerner, Le règne de Joseph Bertrand (1874-1900), in H Gispert, La France Mathématique. La Societé Mathematique de France (1870-1914) (Paris- Berlin, 1991).

Articles:

  1. Addresses to honour Bertrand, Comptes rendus de l'Académie 130 (1900), 961-978.
  2. G Darboux, Eloge historique de J L F Bertrand, Eloges académique et discours (Paris, 1912), 1-60.
  3. F A González Redondo, Origin and first formulation of the pi theorem (Spanish), Bol. Soc. Puig Adam 59 (2001), 83-93.
  4. G N Matvievskaja, Bertrand's postulate in Euler's notes (Russian), Istor.-Mat. Issled. No. 14 (1961), 285-288.
  5. O B Sheynin, Bertrand's work on probability, Arch. Hist. Exact Sci. 48 (2) (1994), 155-199.
  6. O B Sheynin, Geometric probability and the Bertrand paradox, Historia Sci. (2) 13 (1) (2003), 42-53.
  7. O B Sheynin, H Poincaré's work on probability, Arch. Hist. Exact Sci. 42 (2) (1991), 137-171.
  8. P D Vestergaard, How long is the chord? (Bertrand's paradox) (Danish), Normat 3 (1979), 112-114; 128.
  9. VI P Vizgin, Sources of the concept of dynamic symmetry in classical mechanics. The Laplace integral and the Bertrand problem (Russian), Investigations in the history of mechanics ('Nauka', Moscow, 1981), 128-140; 311.

JOC/EFR August 2005

The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/References/Bertrand.html