References for: The Golden ratio


Version for printing
Books

  1. R Herz-Fischler, A mathematical history of division in extreme and mean ratio (Waterloo, Ontario, 1987).
  2. R Herz-Fischler, A mathematical history of the golden number ( New York, 1998).
Articles

  1. E Ackermann, The golden section, Amer. Math. Monthly 2 (1895), 260-264.
  2. R Archibald, The golden section - Fibonacci series, Amer. Math. Monthly 25 (1918), 232-237.
  3. F Campan, The golden section (Romanian), Revista Stiintifica "V. Adamachi" 33 (1947). 225-231.
  4. L Curchin and R Herz-Fischler, De quand date le premier rapprochement entre la suite de Fibonacci et la division en extrême et moyenne raison?, Centaurus 28 (2) (1985), 129-138.
  5. R Fischler, On applications of the golden ratio in the visual arts, Leonardo 14 (1981), 31-32; 262-264; 349-351.
  6. R Fischler, How to find the golden number without really trying, Fibonacci Quart. 19 (1981), 406-410.
  7. D H Fowler, A generalization of the golden section, Fibonacci Quart. 20 (2) (1982), 146-158.
  8. J Kappraff, The relationship between mathematics and mysticism of the golden mean through history, in Fivefold symmetry (River Edge, NJ, 1992), 33-65.
  9. J Mawhin, Au carrefour des mathématiques, de la nature, de l'art et de l'ésotérisme: le nombre d'or, Rev. Questions Sci. 169 (2-3) (1998), 145-178.
  10. G Sarton, When did the term golden section or its equivalent in other languages originate, Isis 42 (1951), 47.
  11. A P Stakhov, The golden section in the measurement theory, in Symmetry 2: unifying human understanding, Part 2, Comput. Math. Appl. 17 (4-6) (1989), 613-638.
  12. A J van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Arch. Wisk. (4) 17 (2) (1999), 229-245.

JOC/EFR July 2001

The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/HistTopics/References/Golden_ratio.html