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PREFACE

IN the Easter Term of the present year I delivered a short course

of six Professorial Lectures on the history of the problem of the
quadrature of the circle, in the hope that a short account of the
fortunes of this celebrated problem might not only prove interesting
in itself, but might also act as a stimulant of interest in the more
general history of Mathematics. It has occurred to me that, by the
publication of the Lectures, they might perhaps be of use, in the
same way, to a larger circle of students of Mathematics.

The acconnt of the problem here given is not the resnlt of any
independent historical research, but the facts have been taken from
the writings of those authors who have investigated various parts of
the history of the problem.

The works to which I am most indebted are the very interesting
book by Prof. F. Rudio entitled “Archimedes, Huygens, Lambert,
Legendre. Vier Abhandlungen iiber die Kreismessung” (Leipzg,
1892), and Sir T. L. Heath’s treatise “The works of Archimedes”
(Cambridge, 1897). I have also made use of Cantor’s *“(Geschichte der
Mathematik,” of Vahlen’s “ Konstruktionen und Approximationen”
(Leipzig, 1911), of Yoshio Mikami’s treatise *The development of
Mathematics in China and Japan” (Leipzig, 1913), of the translation
by T. J. McCormack (Chicago, 1898) of H. Schubert’s “ Mathematical
Essays and Recreations,” and of the article ““The history and trans-
cendence of =" written by Prof. D. E. Smith which appeared in the
“Monographs on Modern Mathematics” edited by Prof J. W. A
Young. On special points 1 have consulted various other writings.

E. W. H

CHRI8TS CoLLEGE, CAMBRIDGE.
October, 1913,
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CHAPTER 1

GENERAL ACCOUNT OF THE PROBLEM

A GENERAL snrvey of the history of thought reveals to us the fact
of the existence of various questions that have ocenpied the almost
continuous attention of the thinking part of mankind for long series of
centuries. Certain fundamental questions presented themselves to the
human mind at the dawn of the history of speculative thought, and
have maintained their substantial identity throughout the centuries,
although the precise terms in which such questions have been stated
have varied from age to age in accordance with the ever varying
attitude of mankind towards fundamentals. In general, it may be
maintained that, to such questions, even after thousands of years of
discussion, no answers have been given that have permanently satisfied
the thinking world, or that have been generally accepted as final
solutions of the matters concerned. It has been said that those
problems that have the longest history are the insoluble ones.

If the contemplation of this kind of relative failure of the efforts of
the human mind is calculated to produce a certain sense of depression,
it may be a relief to turn to certain problems, albeit in a more restricted
domain, that have occupied the minds of men for thousands of years,
but which have at last, in the course of the nineteenth century,
received solutions that we have reasons of overwhelming cogency to
regard as final. Success, even in a comparatively limited field, is
some compensation for failure in a wider field of endeavour. Our
legitimate satisfaction at such exceptional suceess is but slightly
qualified by the fact that the answers ultimately reached are in a
certain sense of a negative character. We may rest contented with
proofs that these problems, in their original somewhat narrow form,
are insoluble, provided we attain, as is actually the case in some
celebrated instances, to a complete comprehension of the grounds,
resting upon a thoroughly established theoretical basis, upon which
our final conviction of the insolubility of the problems is founded.
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The three celebrated problems of the quadrature of the circle, the
trisection of an angle, and the duplication of the cube, although all of

them are somewhat special in character, have one great advantage for
the purposes of historical .qt'.nr]}.rj »tz. that their complete higtor}f ag
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scientific problems lies, m a completed form, before us. Taking the
first of these problems, which will be here our special subject of study,
we possess Indications of its origin in remote antiquity, we are able to
follow the lines on which the treatment of the problem proceeded and
changed from age to age in accordance with the progressive develop-
ment of general Mathematical Science, on which it exercised a
noticeable reaction. We are also able to see how the progress of
endeavours towards a solution was affected by the intervention of some
of the greatest Mathematical thinkers that the world has seen, such
men as Archimedes, Huyghens, Euler, and Hermite. Lastly, we
know when and how the resources of modern Mathematical Science
became sufficiently powerful to make possible that resolution of the
problem which, although negative, in that the impossibility of the
problem subject to the implied restrictions was proved, is far from being
a mere negation, in that the true grounds of the impossibility have
been set forth with a finality and completeness which is somewhat
rare in the history of Science.

If the question be raised, why such an apparently special problem,
as that of the quadrature of the circle, is deserving of the sustained
interest which has attached to 1t, and which it still possesses, the
answer is only to be found in a scrutiny of the history of the
problem, and especially in the closeness of the connection of that
history with the general history of Mathematical Science. It would
be difficult to select another special problem, an account of the history
of which would afford so good an opportunity of obtaining a glimpse
of so many of the main phases of the development of general Mathe-
matics ; and it is for that reason, even more than on account of the
intrinsic interest of the problem, that I have selected it as appropriate
for treatment in a short course of lectures.

Apart from, and alongside of, the scientific history of the problem,
1t has a history of another kind, due to the fact that, at all times, and
almost as much at the present time as formerly, it has attracted the
attention of a class of persons who have, usually with a very inadequate
equipment of knowledge of the true nature of the problem or of its
history, devoted their attention to it, often with passionate enthusiasm.
Such persons have very frequently maintained, in the face of all efforts
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at refutation made by genuine Mathematicians, that they had obtained
a solution of the problem. The solutions propounded by the circle
squarer exhibit every grade of skill, varying from the most futile
attempts, in which the writers shew an utter lack of power to reason
correctly, up to approximate solutions the construction of which
required much ingenuity on the part of their inventor. In some cases
it requires an effort of sustained attention to find out the precise
point in the demonstration at which the error occurs, or in which an
approximate determination is made to do duty for a theoretically
exact one. 'The psychology of the scientific crank is a subject with
which the officials of every Scientific Society have some practical
acquaintance. Every Scientific Society still receives from time to
time communications from the circle squarer and the trisector of
angles, who often make amusing attempts to disguise the real
character of their essays. The solutions propounded by such persons
usually involve some misunderstanding as to the nature of the con-
ditions under which the problems are to be solved, and ignore the
difference between an approximate construction and the solution of
the ideal problem. It is a common occurrence that such a person
sends his solution to the authorities of a foreign University or
Scientific Society, accompanied by a statement that the men of
Secience of the writer’s own country have entered into a conspiracy to
suppress his work, owing to jealousy, and that he hopes to receive
fairer treatment abroad. The statement is not infrequently accom-
panied with directions as to the forwarding of any prize of which the
writer may be found worthy by the University or Scientific Society
addressed, and usually indicates no lack of confidence that the
bestowal of such a prize has been amply deserved as the fit reward for
the final solution of & problem which has baffled the efforts of a great
multitude of predecessors in all ages. A very interesting detailed
account of the peculiarities of the circle squarer, and of the futility of
attempts on the part of Mathematicians to convince him of his errors,
will be found in Augustus De Morgan’s Budget of Paradowes. As
early as the time of the Greek Mathematicians circle-squaring ocenpied
the attention of non-Mathematicians ; in fact the Greeks had a special
word to denote this kind of activity, vz. rerpaywvifew, which means to
occupy oneself with the quadrature. It is interesting to remark that,
in the year 1775, the Paris Academy found it necessary to protect its
officials against the waste of tim% and energy involved in examining
the efforts of circle squarers. It passed a resolution, which appears
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in the Minutes of the Academy¥*, that no more solutions were to be
examined of the problems of the duplication of the cube, the trisection
of the angle, the quadrature of the circle, and that the same resolution

shonld apply to machines for exhibiting perpetual motion. An account

of the reasons which led to the adoption of this resolution, drawn up
by Condorcet, who was then the perpetual Secretary of the Academy,
is appended. It is interesting to remark the strength of the convic-
tion of Mathematicians that the solution of the problem is impossible,
more than a century before an irrefutable proof of the correctness of
that conviction was discovered.

The popularity of the problem among non-Mathematicians may
seem to require some explanation. No doubt, the fact of its com-
parative obviousness explains in part at least its popularity ; unlike
many Mathematical problems, its nature can in some sense be under-
stood by anyone ; although, as we shall presently see, the very terms
in which it is usually stated tend to suggest an imperfect apprehension
of its precise import. The accumulated celebrity which the problem
attained, as one of proverbial difficulty, makes it an irresistibie attrac-
tion to men with a certain kind of mentality. An exaggerated notion
of the gain which would accrue to mankind by a solution of the
problem has at various times beeu a factor in stimulating the efforts
of men with more zeal than knowledge. The man of mystical
tendencies has been attracted to the problem by a vague idea that its
solution would, in some dimly discerned manner, prove a key to a
kuowledge of the inner connections of things far beyond those with
which the problem is ummediately connected.

Statement of the problem

The fact was well known to the Greek Geometers that the problems
of the quadrature and the rectification of the circle are equivalent
problems. It was in fact at an early time established that the ratio of
the length of a complete circle to the diameter has a definite value
equal to that of the area of the circle to that of a square of which the
radius is side. Since the time of Euler this ratio has always been
denoted by the familiar notation =, The problem of ‘“squaring the
circle” is roughly that of constructing a square of which the area is
equal to that enclosed by the circle. This is then equivalent to the
problem of the rectification of the circle, 7.e. of the determination of a

* Histoire de I’ Académie royale, année 1775, p. 61.
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straight line, of which the length is equal to that of the circumference
of the eircle. But a problem of this kind becomes definite only when it
is specified what means are to be at our disposal for the purpose of
making the required construetion or determination; accordingly, in
order to present the statement of our problem in a precise form, it is
necessary to give some preliminary explanations as to the nature of
the postulations which underlie all geometrical procedure.

The Science of Geometry has two sides; on the one side, that of
practical or physical Geometry, it is a physical Science concerned with
the actual spatial relations of the extended bodies which we perceive
in the physical world. It was in connection with our interests, of a
practical character, in the physical world, that Geometry took its
origin. Herodotus aseribes its origin in Egypt to the necessity of
measuring the areas of estates of which the boundaries had been
obliterated by the inundations of the Nile, the inhabitants being com-
pelled, in order to settle disputes, to compare the areas of fields of
different shapes. On this side of Geometry, the objects spoken of,
such as points, lines, &c., are physical objects; a point is a very small
object of scarcely perceptible and practically negligible dimensions; a
line is an object of small, and for some purposes negligible, thickness ;
and so on. The constructions of figures consisting of points, straight
lines, circles, &c., which we draw, are constructions of actual physical
objects. In this domain, the possibility of making a particular con-
struction is dependent upon the instruments which we have at our
disposal.

On the other side of the subject, Geometry is an abstract or
rational Science which deals with the relations of objects that are no
longer physical objects, although these ideal objects, points, straight
lines, cireles, &c., are called by the same names by which we denote
their physical counterparts. At the base of this rational Science there
lies a set of definitions and postulations which specify the nature of
the relations between the ideal objects with which the Science deals.
These postulations and definitions were suggested by our actual
spatial perceptions, but they contain an element of absolute exactness
which is wanting in the rough data provided by our senmses. The
objects of abstract Geometry possess in absolute precision properties
which are only approximately realized in the corresponding objects of
physical Geometry. In every department of Science there exists in a
greater or less degree this distinction between the abstract or rational
side and the physical or concrete side; and the progress of each
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department of Science involves a continually increasing amount of
rationalization. In Geometry the passage from a purely empirical
treatment to the setting up of a rational Science proceeded by much

| S v tha (Ieasls
more rapid stages than in other cases. We have in the Greek

Geometry, known to us all through the presentation of it given in that
oldest of all scientific text books, Euclid’s Elements of Geometry, s
treatment of the subject in which the process of rationalization has
already reached an advanced stage. The possibility of solving a
particular problem of determination, such as the one we are con-
templating, as a problem of rational Geometry, depends upon the
postulations that are made as to the allowable modes of determination
of new geometrical elements by means of assigned ones. The restric-
tion in practical Geometry to the use of specified instruments has its
counterpart in theoretical Geometry in restrictions as to the mode in
which new elements are to be determined by means of given ones. As
regards the postulations of rational Geometry in this respect there is
a certain arbitrariness corresponding to the more or less arbitrary
restriction in practical Geometry to the use of specified instruments.

The ordinary obliteration of the distinction hetween abstract and
physical Geometry is furthered by the fact that we all of us, habitually
and almost necessarily, consider both aspects of the subject at the
same time. We may be thinking out a chain of reasoning in abstract
Geometry, but if we draw a figure, as we usually must do in order to
fix our ideas and prevent our attention from wandering owing to the
difficulty of keeping a long chain of syllogisms in our minds, it is
excusable if we are apt to forget that we are not in reality reasoning
about the objects in the figure, but about objects which are their
idealizations, and of which the objects in the figure are only an
imperfect representation. Even if we only visualize, we see the images
of more or less gross physical objects, in which various qualities
irrelevant for our specific purpose are not entirely absent, and which
are at best only approximate images of those objects about which we
are reasoning.

It is usunally stated that the problem of squaring the circle, or the
equivalent one of rectifying 1t, is that of constructing a square of an
avea equal to that of the circle, or in the latter case of constructing
a straight line of length equal to that of the circumference, by a
method which involves the use only of the compass and of the ruler as
a single straight-edge. This mode of statement, although it indicates
roughly the true statement of the problem, is decidedly defective in
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that it entirely leaves out of account the fundamental distinction
hetween the two aspects of Geometry to which allusion has been made
above. The compass and the straight-edge are physical objects by the

C
use of which other objects can be constructed, véz. circles of small

thickness, and lines which are approximately straight and very thin,
made of ink or other material. Such instruments can clearly have no
direct relation to theoretical Geometry, in which circles and straight
lines are ideal objects possessing in absolute precision properties that
are only approximately realized in the circles and straight lines that
can be constructed by compasses and rulers. In theoretical Geometry,
a restriction to the use of rulers and compasses, or of other instru-
ments, must be replaced by corresponding postulations as to the
allowable modes of determination of geometrical objects. We will see
what these postulations really are in the case of Euclidean (eometry.
Every Euclidean problem of construction, or as it would be preferable
to say, every problem of determination, really consists in the deter-
mination of one or more points which shall satisfy preseribed conditions.
We have here to consider the fundamental modes in which, when a
number of points are regarded as given, or already determined, a new
point 1s allowed to be determined.

Two of the fundamental postulations of Euclidean Geometry are
that, having given two points A and B, then (1) a unique straight
line (4, B) (the whole straight line, and not merely the segment
between A and B) is determined such that 4 and B are incident on
it, and (2) that a unique circle A (B), of which A is centre and on
which 2 1s incident, is determined. The determinancy or assumption
of existence of such straight lines and circles is in theoretical Geo-
metry sufficient for the purposes of the subject. When we know that
these objects, having known properties, exist, we may reason about
them and employ them for the purposes of our further procedure ; and
that is sufficient for our purpose. The notion of drawing or con-
structing them by means of a straight-edge or compass has no
relevance to abstract Geometry, but is borrowed from the language
of practical Geometry.

A new point is determined in Euclidean Geometry exclusively in
one of the three following ways :

Having given four points A, B, C, D, not all incident on the same
straight line, then

(1) Whenever a point P exists which is incident both on (4, B)
and on (C, D), that point is regarded as determinate.
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(2) Whenever a point P exists which is incident both on the
straight line (4, B) and on the circle C' (D), that point is regarded as
determinate.

(8) Whenever a point P exists which is incident on both the
circles A (B), C(D), that point is regarded as determinate.

The cardinal points of any figure determined by a Euclidean
construotion are always found by means of a finite number of
successive applications of some or all of these rules (1), (2) and (38).
Whenever one of these rules is applied it must be shewn that it does
not fail to determine the point. Euclid’s own treatment is sometimes
defective as regards this requisite; as for example in the first pro-
position of his first book, in which it is not shewn that the circles
intersect one another.

In order to make the practical constructions which correspond to
these three Euclidean modes of determination, corresponding to (1) the
ruler 1s required, corresponding to (2) both the ruler and the compass,
and corresponding to (3) the compass only.

As Euclidean plane Geometry is concerned with the relations of
points, straight lines, and circles only, it is clear that the above system
of postulations, although arbitrary in appearance, is the system that
the exigencies of the subject would naturally suggest. It may, how-
ever, be remarked that 1t is possible to develop Euclidean Geometry
with a more restricted set of postulations. For example it can be
shewn that all Euclidean constructions can be carried out by means of
(8) alone¥, without employing (1) or (2).

Having made these preliminary explanations we are now in a
position to state in a precise form the ideal problem of “squaring the
circle,” or the equivalent one of the rectification of the circle.

The historical problem of “squaring the circle” is that of deter-
mining a square of which the area shall equal that of a given circle,
by a method such that the determination of the corners of the square
is to be made by means of the above rules (1), (2), (3), each of which
may be applied any finite number of times. In other words, each new
point successively determined in the process of construction is to be
obtained as the intersection of two straight lines already determined,
or a8 an intersection of a straight line and a circle already deter-
mined, or as an intersection of two circles already determined. A

* SBee for example the Mathematical Gazette for March 1913, where I have
treated this point in detail in the Presidential Address to the Mathematical
Association.
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similar statement applies to the equivalent problem of the rectification
of the circle.

This mode of determination of the required figure we may speak of
shortly as a EBuclidean determination.

Corresponding to any problem of Euclidean determination there is
a practical problem of physical Geometry to be carried out by actual
construction of straight lines and cireles by the use of ruler and com-
passes. Whenever an ideal problem is soluble as one of Euclidean
determination the corresponding practical problem is also a feasible
one. 'The ideal problem has then a solution which is ideally perfect ;
the practical problem has a solution which is an approximation limited
only by the imperfections of the instruments used, the ruler and the
compass; and tbis approximation may be so great that there is no
perceptible defect in the result. But it is an error which accounts [
think, in large measure, for the aberrations of the circle squarer and
the trisector of angles, to assume the converse that, when a practical
problem is soluble by the use of the instruments in such a way that
the error is negligible or imperceptible, the corresponding ideal pro-
blem is also soluble. This is very far from being necessarily the case.
[t may happen that in the case of a particular ideal problem o
solution is obtainable by a finite number of successive Euclidean
(eterminations, and yet that such a finite set gives an approximation
to the solution which may be made as close as we please by taking the
process far enough. In this case, although the ideal problem is in-
soluble by the means which are permitted, the practical problem is
soluble in the sense that a solution may be obtained in which the
error is negligible or imperceptible, whatever standard of possible
perceptions we may employ. As we have seen, a Euclidean problem
of construection is reducible to the determination of one or more points
which satisfy prescribed conditions. Let P be one such point ; then
1t may he possible to determine in Euclidean fashion each point of a
set Py, P, ... Py, ... of points which converge to P as limiting point,
and yet the point 2 may be incapable of determination by Euclidean
procedure. This is what we now know to be the state of things in the
case of our special problem of the quadrature of the circle by Euclidean
determination. As an ideal problem it is not capable of solution, but
the corresponding practical problem is capable of solution with an
accuracy bounded only by the limitations of our perceptions and the
imperfections of the instruments employed. Ideally we can actually
determine by Euclidean methods a square of which the area differs
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from that of a given cirele by less than an arbitrarily prescribed
magnitude, although we cannot pass to the limit. We can obtain
solutions of the corresponding physical problem which leave nothing
to be desired from the practical point of view. Such is the answer
which has been obtained to the question raised in this celebrated
historical problem of Geometry. I propose to consider in some detail
the various modes in which the problem has been attacked by people
of various races, and through many centuries ; how the modes of
attack have been modified by the progressive development of Mathe-
matical teols, and how the final answer, the nature of which had

been long anticipated by all competent Mathematicians, was at last
found and placed on a firm basis.

Geneoral survey of the lkistory of the problem

The history of our problem is typical as exhibiting in a remarkable
degree many of the phenomena that are characteristic of the history of
Mathematical Science in general. We notice the early attempts at an
empirical solution of the problem conceived in a vague and sometimes
confused manner; the gradual transition to a clearer notion of the
problem as one to be solved subject to precise conditions. We observe
also the intimate relation which the mode of regarding the problem in
any age had with the state then reached by Mathematical Science in
its wider aspect ; the essential dependence of the mode of treatment of
the problem on the powers of the existing tools. We observe the fact
that, as in Mathematics in general, the really great advances, embody-
ing new ideas of far-reaching fruitfulness, have been due to an
exceedingly small number of great men ; and how a great advance has
often been followed by a period in which only comparatively small
improvements in, and detailed developments of, the new ideas have
been accomplished by a series of men of lesser rank. We observe that
there have been periods when for a long series of centuries no advance
was made ; when the results obtained in a more enlightened age have
been forgotten. We observe the times of revival, when the older
learning has been rediscovered, and when the results of the progress
made in distant countries have been made available as the starting
points of new efforts and of a fresh period of activity.

The history of our problem falls into three periods marked out by
fandamentally distinet differences in respect of method, of immediate
aims, and of equipment in the possession of intellectual tools. The
first period embraces the time between the first records of empirical
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Jeterminations of the ratio of the circumference to the diameter of a
circle until the invention of the Differential and Integral Calculus, in
the middle of the <eventeenth century. This period, m which the
-deal of an exact construction was never entirely lost sight of, and was
occasionally supposed to have been attained, was the geometrical
period, 1n which the main activity consisted in the approximate
determination of = by calculation of the sides or areas of regular
polygons in- and circum-scribed to the circle. The theoretical ground-
work of the method was the Greek method of Exhaustions. In the
earlier part of the period the work of approximation was much
hampered by the backward condition of arithmetic due to the fact
that our present system of numerical notation had not yet been
invented ; but the closeness of the approximations obtained in spite
of this great obstacle are truly surprising. In the later part of this
first period methods were devised by which approximations to the
value of = were obtained which required only a fraction of the labour
involved in the earlier caleulations. At the end of the period the
method was developed to so high a degree of perfection that no
further advance could be hoped for on the lines laid down by the
Greek Mathematicians; for further progress more powerful methods
were requisite.

The second period, which commenced in the middle of the seven-
teenth century, and lasted for about a century, was characterized by
the application of the powerful analytical methods provided by the
new Analysis to the determination of analytical expressions for the
number = in the form of convergent series, products, and continued
fractions. The older geometrical forms of investigation gave way to
analytical processes in which the functional relationship as applied
to the trigonometrical functions became prominent. The new methods
of systematic representation gave rise to a race of calculators of m,
who, in their consciousness of the vastly enhanced means of calcula-
tion placed in their hands by the new Analysis, proceeded to apply
the formulae to obtain numerical approximations to = 0 €ver larger
numbers of places of decimals, although their efforts were quite useless
for the purpose of throwing light upon the true nature of that number.
At the end of this period no knowledge had been obtained as regards
the number = of a kind likely to throw light upon the possibility or
impossibility of the old historical problem of the ideal construction ;
it was not even definitely known whether the number is rational or
- rrational. However, one great discovery, destined to furnish the clue
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to the solution of the problem, was made at this time; that of the
relation between the two numbers = and ¢, as a particular case of
those exponential expressions for the trigonometrical functions which

i0fm One 01 ule Imosy Luuuauxcuuau‘y 1m1}u1muu 0r U

weapons forged during this period.

In the third period, which lasted from the middle of the eighteenth
century until late in the nineteenth century, attention was turned to
critical investigations of the true nature of the number = itself,
considered independently of mere analytical representations. The
number was first studied in respect of its rationality or irrationality,
and it was shewn to be really irrational. When the discovery was
made of the fundamental distinction between algebraic and trans-
cendental numbers, ¢.e. between those numbers which can be, and
those numbers which cannot be, roots of an algebraical equation with
rational coefficients, the question arose to which of these categories
the number = belongs. It was finally established by a method which
involved the use of some of the most modern devices of analytical
investigation that the number = is transcendental. When this result
was combined with the results of a critical investigation of the
possibilities of a Eueclidean determination, the inference could be
made that the number =, being transcendental, does not admit of
construction either by a Euchdean determination, or even by a
determination in which the use of other algebraic curves besides the
straight line and the circle is permitted. The answer to the original
question thus obtained is of a conclusively negative character ; but it
is one in which a clear accouunt is given of the fundamental reasons
upon which that negative auswer rests.

We have here a record of human effort persisting throughout the
best part of four thousand years, in which the goal to be attained was
seldom wholly lost sight of. When we look back, in the light of the
completed history of the problem, we are able to appreciate the diffi-
culties which in each age restricted the progress which could be made
within hmits which could not be surpassed by the means then avail-
able ; we see how, when new weapons became available, a new race of
thinkers turned to the further consideration of the problem with a new
outlook,

The quality of the human mind, considered m its collective
aspect, which most strikes us, in surveying this record, is its colossal
patience.
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THE FIRST PERIOD

Earliest traces of the problem

THE earliest traces of a determination of = are to be found in the
Papyrus Rlind which is preserved in the British Museum and was
translated and explained* by Eisenlohr. It was copied by a clerk,
named Ahmes, of the king Raaus, probably about 1700 B.c., and
eontains an account of older Egyptian writings ou Mathematics. It is
there stated that the area of a circle is equal to that of a square whose
side 1s the diameter diminished by one ninth; thus A4 =(§)*d* or
comparing with the formula 4 = }=d? this would give

T = -'2'8-51-—6; = 3'1604....

No account 1s given of the means by which this, the earliest determina-
tion of m, was obtained; but it was probably found empirically.

The approximation = = 3, less accurate than the Egyptian one, was
known to the Babylonians, and was probably connected with their
discovery that a regular hexagon inseribed in a circle has its side
equal to the radius, and with the division of the circumference into
6 x 60 = 360 equal parts.

This assumption (w=3) was current for many centuries; it is
implied in the Old Testament, 1 Kings vii. 23, and in 2 Chronicles 1v.
2, where the following statement occurs :

““ Also he made a molten sea of ten cubits from brim to brim, round
in compass, and five cubits the height thereof; and a line of thirty
cubits did compass it round about.”

The same assumption is to be found in the Talmud, where the
statement is made ‘“that which in circumfereuce 1s three hands broad
is one hand broad.”

* Risenlohr, Ein mathematisches Handbuch der alten Agypter (Leipzig, 1877).
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The earlier Greek Mathematicians

It 1s to the Greek Mathematicians, the originators of Geometry as
an abstract Scieuce, that we owe the first systematic treatment of the
problems of the quadrature and rectification of the circle. The oldest
of the Greek Mathematicians, Thales of Miletus (640548 B.c.) and
Pythagoras of Samos (580—500 B.c.), probably introduced the Egyptian
(Feometry to the Greeks, but it is not known whether they dealt with
the quadrature of the circle. According to Plutarch (in De exilio),
Anaxagoras of Clazomene (500—428 B.c.) employed his time during
an incarceration in prison on Mathematical speculatious, and constructed
the quadrature of the ecircle. He probably made an approximate
construction of an equal square, and was of opinion that he had
obtained an exact solution. At all events, from this time the problem
received continuous consideration,

About the year 420 B.c. Hippias of Elis invented a curve known as
the 7erpaywvilovoa or Quadratrix, which is usually conuected with the
name of Dinostratus (second half of the fourth century) who studied
the curve carefully, and who shewed that the use of the curve gives
a construction for =

This curve may be described as follows, using modern notation.

Let a point @ starting at A describe the circular quadrant 4 B
with uniform velocity, and let a point B g
starting at O describe the radius OB with
uniform velocity, and so that if ¢ and R
start simultaneously they will reach the
point B simultaneously. Let the point P
be the intersection of O with & line perpen-
dicular to OB drawn from £. The locus of
P is the quadratnx. Letting - Q04 =6,
and OR =y, the ratio y/6 is constant, and O
equal to 2a/m, where a denotes the radius of
the circle.  We have

Fia. 1.

_ _ Y
r=ycotl, or x ycotga,

the equation of the curve in rectangular coordinates. 'The curve will
_intersect the z axis at the point

T = }’ih_r-rg (y cot %) =2a/r.
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If the curve could be constructed, we should have a construction for
the length 2a/w, and thence one for =, It was at once seen that the
construction of the curve itself involves the same difficulty as that of =.

The problem was considered by some of the Sophists, who made

futile attempts to connect it W1th the discovery of “cyclical square
numbers,” 7.e. such square numbers as end with the same cipher as the
number itself, as for example 25 = 5% 36 = 6*; but the right path to
a real treatment of the problem was discovered by Antiphon and
further developed by Bryson, both of them contemporaries of Socrates
(469—399 B.c.). Antiphon inscribed a square in the circle and passed
on to an octagon, 16agon, &c., and thought that by proceeding far
enough a polygon would be obtained of which the sides would be so
small that they would coincide with the ecircle. Since a square can
always be described so as to be equal to a rectilineal polygon, and
a circle can be replaced by a polygon of equal area, the quadrature of
the circle would be performed. That this procedure would give only
an approximate solution he overlooked. The important improvement
was introduced by Bryson of considering circumseribed as well as
inscribed polygons; in this procedure he foreshadowed the notion of
upper and lower limits in a limiting process. He thought that the
area of the circle could be found by taking the mean of the areas of
corresponding in- and circum-seribed polygons.

Hippocrates of Chios who lived in Athens in the second half of
the fifth century B.c., and wrote the first text book on Geometry, was
the first to give examples of curvilinear areas which admit of exact
quadrature. These figures are the menisci or lunnlae of Hippocrates.

If on the sides of a right-angled triangle ACB semi-circles are
described on the same side, the sum of
the areas of the two lunes AEC, BDC g
is equal to that of the triangle ACB.
If the right-angled triangle is isosceles,
the two lunes are equal, and each of
them is half the area of the triangle. A B
Thus the area of a lunula is found. Fia. 2.

If AC=CD=DB=radius 04 (see Fig. 3), the semi-circle 4 CE
is } of the semi-circle ACDB. We have now

DAB~-3DAC = ACDE — 3. meniscus ACE,

and each of these expressions is }DAB or half the circle on
348 as diameter. If then the meniscus AXC were quadrable
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so also would be the circle on 14B as diameter. Hippocrates
recognized the fact that the meniscus is not quadrable, and he made
attempts to find other quadrable

lunulae in order to make the quad- TN

rature of the circle depend on that

of such quadrable lunulae. The /\ C o)

guestion of the existence of various €
kinds of quadrable lunulae was
taken up by Th. Clausen® in 1840,
who discovered four other quad-
rable lunulae in addition to the
one mentioned above. The question was considered in a general
manner by Professor Landan t of Gottingen in 1830, who pointed out
that two of the four lunulae which Clausen supposed to be new were
already known to Hippocrates.

From the time of Plato (429--348 B.c.), who emphasized the
distinction between Geometry which deals with incorporeal things or
images of pure thought and Mechanics which is concerned with things
in the external world, the idea became prevalent that problems such as
that with which we are concerned should he solved by Euclidean
determination only, equivalent on the practical side to the use of two
instruments only, the ruler and the compass.

Fia. 3.

The work of Archkimedes

The first really scientific treatment of the problem was undertaken
by the greatest of all the Mathematicians of antiquity, Archimedes
(287—212 B.c.). In order to understand the mode in which he
actually established his very important approximation to the value of =
it is necessary for us to consider in some detail the Greek method of
dealing with problems of limits, which in the hands of Archimedes
provided a method of performing genuine integrations, snch as his
determination of the area of a segment of a parabola, and of a con-
siderable number of areas and volumes.

This method is that known as the method of exhaustions, and
rests on a prineiple stated in the enunciation of Euclid x. 1, as follows :

“Two unequal magnitudes being set out, if from the greater there
he subtracted a magnitude greater than its half, and from that which

* Journal filr Mathematik, vol. 21, p. 375.
t Archiv Math. Physik (3) 4 (1903).
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is left a magntude greater than its half, and if this process be repeated
continually, there will be left some magnitude which will be less than
the lesser magnitude set out.”

This principle 1s deduced by Euclid from the axiom that, if there
are two magnitudes of the same kind, then a multiple of the smaller
one can be found which will exceed the greater one. This latter axiom
is given by Euchid in the form of a definition of ratio (Book v. def. 4),
and 1s now known as the axiom of Archimedes, although, as Archimedes
himself states in the mtroduction to his work on the quadrature of the
parabola, it was known and had been already employed by earlier
Geometers. The importance of this so-called axiom of Archimedes,
now generally considered as a postulate, has been widely recognized in
connection with the modern views as to the arithmetic continuum and
the theory of continuous magnitude. The attention of Mathematicians
was directed to 1t by O. Stolz*, who shewed that it was a consequence of
Dedekind’s postulate relating to ““sections.” 'The possibility of dealing
with systems of numbers or of magnitudes for which the principle does
not hold has been considered by Verouese and other Mathematicians,
who contemplate non-Archimedean systems, .. systems for which
this postulate does not hold. The acceptance of the postulate is
equivalent to the ruling out of infinite and of infinitesimal magnitudes
or numbers as existent in any system of magnitudes or of numbers
for which the truth of the postulate is accepted.

The example of the use of the method of exhaustions which is most
familiar to us is contained in the proof given in Euclid x11. 2, that the
areas of two circles are to one another as the squares on their diameters.
This theorem which is a presupposition of the reduction of the problem
of squaring the circle to that of the determination of a definite ratio =
1s said to have been proved by Hippoerates, and the proof given by
Euchd is pretty certainly due to Eudoxus, to whom various other
applications of the method of Exhaustions are specifically attributed
by Archimedes. Euclid shews that the circle can be ‘“exhausted” by
the inseription of a sequence of regular polygons each of which has twice
as many sides a8 the preceding one. He shews that the area of the
mscribed square exceeds half the area of the circle; he then passes to
an octagon by bisecting the arcs bounded by the sides of the square.
He shews that the excess of the area of the circle over that of the
octagon is less than half what is left of the circle when the square is
removed from it, and so on through the further stages of the process.

* See Math, Annalen, vol. 22, p. 504, and vol. 39, p. 107.
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The truth of the theorem is then inferred by shewing that a contrary
assumption leads to a contradiction.

A study of the works of Archimedes, now rendered easily accessible
to us in Sir T. L. Heath’s critical edition, is of the greatest interest
not merely from the historical point of view but also as affording
8 very Instructive methodological study of rigorous treatment of
problems of determination of limits. The method by which Archimedes
and other Greek Mathematicians contemplated limit problems Impresses
one, apart from the geometrical form, with its essentially modern way
of regarding such problems. In the application of the method of
exhaustions and its extensions no use is made of the ideas of the
infinite or the infinitesimal ; there is no Jumping to the limit as the
supposed end of an essentially endless process, to be reached by some
wscrutable saltus. This passage to the limit is always evaded by
substituting a proof in the form of a reductio ad absurdum, involving
the use of inequalities such as we have in recent times again adopted
as appropriate to a rigorous treatment of such matters. Thus the
Greeks, who were however thoroughly familiar with all the difficnlties
as to infinrte divisibility, continuity, &c., in their mathematical proofs
of limit theorems never involved themselves in the morass of indivisibles,
indiscernibles, infinitesimals, &ec., in which the Calculus after its
invention by Newton and Leibnitz became involved, and from which
our own text books are not yet completely free.

The essential rigour of the processes employed by Archimedes, with
such fruitful results, Jeaves, according to our modern views, one point
open to criticism. The Greeks never doubted that a circle has a
definite area in the same sense that a rectangle has one; nor did they
doubt that a circle has a length in the same sense that a straight line
has one. They had not contemplated the notion of non-rectifiable
curves, or non-quadrable areas; to them the existence of areas and
lengths as definite magnitudes was obvious from intuition. At the
present time we take only the length of a segment of a straight line,
the area of a rectangle, and the volume of a rectangular parallelepiped
as primary notions, and other lengths, areas, and volumes we regard as
derivative, the actual existence of which in accordance with certain de-
finitions requires to be established in each individual ease or in particular
classes of cases. For example, the measure of the length of a circle is
defined thus: A sequence of inseribed polygons 15 taken so that the
namber of sides increases indefinitely as the sequence proceeds, and
such that the length of the greatest side of the polygon diminishes
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indefinitely, then if the numbers which represent the perimeters of the
successive polygons form a convergent sequence, of which the arithmetical
limit is one and the same number for all sequences of polygons which

aaho_fv the nrescribed r‘nndThnnq the circle has a lencth represented
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by this limit. It must be proved that this limit exists and is inde-
pendent of the particular sequence employed, before we are entitled to
regard the circle as rectifiable.

In his work xiéxAov pérpyots, the measurement of a circle, Archimedes
proves the following three theorems.

(1) The area of any circle is equal to a right-angled triangle in
which one of the sides about the right angle i1s equal to the radius,
and the other to the circumference, of the circle.

(2) The area of the circle is to the square on its diameter as 11 to
14.

(3) The ratio of the eircumference of any circle to its diameter is
less than 3} but greater than 333.

It is clear that (2) must be regarded as entirely subordinate to (3).
In order to estimate the accuracy of the statement in (8), we observe
that

31=314285..., 330=314084..., ==314159....

In order to form some idea of the wonderful power displayed by
Archimedes in obtaining these results with the very limited means at
his disposal, it 1s necessary to desctibe briefly the details of the method
he employed.

His first theorem is established by using sequences of in- and
circum-scribed polygons and a reductic ad absurdum, as in Euclid x11.
2, by the method already referred to above.

In order to establish the first part of (3), Archimedes considers
a regular hexagon circumscribed to the circle.

In the figure, 4 C is half one of the sides of this hexagon. Then

04 265
a0=V3> 15

Bisecting the angle AOC, we obtain 4D half the side of a regular

: : 0D _ 5913 :
circumscribed 12agon. It 1s then shewn that DA 153 - If OF is

the bisector of the angle DOA, AFE is half the side of a circum-

. L OE 1172}
scribed 24agon, and it is then shewn that A~ 153 Next,

bisecting £OA, we obtain AF the half side of a 48agon, and 1t
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g{: > 2??3%. Lastly if OG (not shewn in the figure)

be the bisector of F'0A, AG is the half side of a regular 96agon

circumscribing the circle, and it 1s shewn that Oé > 46@
d g ’ ‘ AG~ 153 °

thence that the ratio of the diameter to the perimeter of the 96agon

1s shewn that

and

D
e—— A

o

Fia. 4.

73}

18 >%g—68_8’ and 1t 1s deduced that the circumference of the circle,

which 1s less than the perimeter of the polygon, is < 3% of the diameter.
The second part of the theorem is obtained in a similar manner by
determination of the side of a regular 96agon inscribed in the circle.

In the course of his work, Archimedes assumes and employs,
without explanation as to how the approximations were obtained, the
following estimates of the values of square roots of numbers :

13515 /3> 285 30133 > /9082321, 18385 > /3380929,
10093 > /1018405, 20174 > V4069284, 5911 < /349450,
11724 <#/137394333, 2339} < J/5472132.%.

In order to appreciate the nature of the difficulties in the way of
obtaining these approximations we must remember the backward
condition of Arithmetic with the Greeks, owing to the fact that they
possessed a system of notation which was exceedingly inconvenient for
the purpose of performing.arithmetical calculations.

The letters of the alphabet together with three additional signs
were employed, each letter heing provided with an accent or with
a short horizontel stroke; thus the nine integers

1,2 8, 4,5,6, 7,8, 9 were denoted by o', 8, ¥, &, ¢, s, {, v, ¢,
the multiples of 10,
10, 20, 30, ... 90 were denoted by «, «', X, p/, ¥, &, o, 7', ¢/,
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the multiples of 100,

100, 200, ... 900 by o, o', ¥, v, &', X, ¥, ', .
MThe intermediate numbers were expressed by juxtaposition, repre-
«enting here addition, the largest number being placed on the left, the
next largest following, and so on in order. There was no sign for
gero. 'Thousands were represented by the same letters as the first
nine integers but with a small dash in front and below the line; thus

for example &' was 4000, and 1913 was expressed by a2y or & Auy.
10000 and higher numbers were expressed by using the ordinary
numerals with M or Mv as an abbreviation for the word pvpudas; the
number of myriads, or the multiple of 10000, was generally written

Ad
over the abbreviation, thus 349450 was M fwv’. A variety of devices
were employed for the representation of fractions*.

The determinations of square roots such as /3 by Archimedes
were much closer than those of earlier Greek writers. There has been
much speculation as to the method he must have employed in their
determination. There is reason to believe that he was acquainted
with the method of approximation that we should denote by

b
20+ 1°

b -
at~>~/a2ib>ai
2a

Various alternative explanations have been suggested; some of these
suggest that a method equivalent to the use of approximation by
continued fractions was employed.

A full discussion of this matter will be found in Sir T. L. Heath’s
work on Archimedes.

The treatise of Archimedes on the measurement of the circle must
be regarded as the one really great step made by the Greeks towards
the solution of the problem ; in fact no essentially new mode of attack
was made until the imvention of the Calculus provided Mathematicians
with new weapons. In a later writing which has been lost, but which
1s mentioned by Hero, Archimedes found a still closer approximation
to =,

The essential points of the method of Archimedes, when generalized
and expressed in modern notation, consist of the following theorems :

(1) The inequalities sin 6 < 8 < tan 6.

* For an interesting account of the Arithmetic of Archimedes, see Heath’s
Works of Archimedes, Chapter 1v.
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(2) The relations for the successive calculation of the perimeters
and areas of polygons inscribed and circumseribed to a circle.

Denoting by ps, a, the perimeter and area of an inscribed regular
polygon of n sides, and by P,, 4, the perimeter and area of a circum-
scribed regular polygon of # sides, these relations are

pmz ‘\/pﬂ,Pm, Aoy = \/anAn,

_QPnPn H_2a§mAn
o+ P T a4,

Thus the two series of magnitudes

Pﬂ’ pﬂ.: Pm:}?m; P-m, Pm: rrry
-Aﬂ-: a?l'h 'A%) Qyn -A-‘iﬂ«! Qgn, "y

m

are calculated successively in accordance with the same law. In each
case any element 18 calculated from the two preceding ones by taking
alternately their harmonic and geometric means. This system of
formulae is known as the Archimedean Algorithm ; by means of it the
chords and tangents of the angles at the centre of such polygons as
are constructible can be calculated. By methods essentially equivalen’
to the use of this algorithm the sines and tangents of small angles
were obtained to a tolerably close approximation. For example,
Anstarchus (250 B.c.) obtained the limts % and % for sin 1°.

The work of the later Greeks

Among the later Greeks, Hipparchus (180125 B.c.) calculated
the first table of chords of a circle and thus founded the science o
Trigonometry. But the greatest step in this direction was made by
Ptolemy (87—165 A.p.) who calculated a table of chords in which the
chords of all angles at intervals of }° from 0° to 180° are contained
and thus constructed a trigonometry that was not surpassed fi
1000 years. He was the first to obtain an approximation to = mo.
exact than that of Archimedes; this was expressed in sexagesimal
measure by 3° 8’ 30” which is equivalent to

3+ 56+ 3860 OF 315g = 3714166....

The work of the Indians

We have now to pass over to the Indian Mathematicians. Aryal
hatta (about 500 A.p.) knew the value

25555 = 8'1416 for =.

The same value in the form 2327 was given by Bhaskara (born 1114 .1
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in his work The crowning of the system ; and he describes this value as
exact, in contrast with the nexact value 2%, His commentator Gancea

explains that this result was obtained by calculating the perimeters of
nolygons of 12, 24, 48, 96, 192 and 3884 Ane’ }w the use of the

polygons of 12, 24, 96, 192, and 384 the
formula _
=Je-Jiar

connecting the sides of inscribed polygons of 2r and » sides respectively,
the radius bemg taken as unity. If the diameter is 100, the side of
an inscribed 884agon is +/98694 which leads to the above value* given
by Aryabhatta. Brahmagupta (born 598 A.D.) gave as the exact value
» =+/10. Hankel has suggested that this was obtained as the
supposed limit (J/1000) of /965, +/931, /986, V987 (diameter 10),
the perimeters of polygons of 12, 24, 48, 96 sides, but this explanation
is doubtful. It has also been suggested that it was obtained by the
approximate formula,

V@ v z=a+ .
2a + &

which gives V10=3 + 1.

The work of the Chinese Mathematicians

The earliest Chinese Mathematicians, from the time of Chou-Kong
who lived in the 12th century B.c., employed the approximation ==3.
Some of those who used this approximation were mathematicians of

considerable attainments in other respects.
~ According to the Sui-shu, or Records of the Sur dynasty, there
were a large number of circle-squarers, who calculated the length of
the circular circamference, obtaining however divergent results.
" Chang Hing, who died in 139 A.D., gave the rule

(circumference )’ 5
(perimeter of circumscribed square)® 8

H

which is equivalent to = = V/10.

Wang Fow made the statement that if the circumference of a
circle 1s 142 the diameter is 45; this 1s equivalent to ==3'1555....
No record has been found of the method by which this result was
obtained.

* See Colebrooke’s dlgebra with arithmetic and mensuration, from the Sanscrit
of Brahmagupta and Bhaskara, London, 1817.
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Liuw Hui published in 263 A.D. an Arithmetic in nine sections which
contains a determination of = Starting with an inscribed regular

hexagon, he proceeds to the inscribed dodecagon, 24agon, and so on,
and finds the ratio of the circumference to the diameter to be 157 : 50,
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which is equivalent to = = 3'14.

By fur the most interesting Chinese determination was that of the
great Astronomer 7su Ch'ung-chik (born 430 A.n.). He found the
two values %% and 235 (=3-1415929 ..). In fact he proved that
10 lies between 31:415927 and 31415926, and deduced the
value 333,

The value %% which is that of Archimedes he spoke of as the
“‘inaccurate” value, and 3£$ as the “accurate value.” This latter value
was not obtained either by the Greeks or the Hindoos, and was only
rediscovered in Europe more than a thousand years later, by Adriaen
Anthonisz. The later Chinese Mathematicians employed for the
most part the ‘“inaccurate” value, but the “accurate” value was
rediscovered by Chang Yu-chin, who employed an inseribed polygon
with 2" sides.

The work of the Arabs

In the middle ages a knowledge of Greek and Indian mathematics
was introduced into Europe by the Arabs, largely by means of Arabic
translations of Euclid’s elements, Ptolemy’s ovvrafis, and treatises by
Appollontus and Archiinedes, including the treatise of Archimedes on
the measurement of the circle.

The first Arabic Mathematician Muhammed ibn M(si Alchwarizmi,
at the beginning of the ninth century, gave the Greek value == 3},

and the Indian values ==/10, » = 82832 which he states to be of
Indian origin. He introduced the Indian system of numerals which
was spread in Europe at the beginning of the 13th century by Leonardo
Pisano, called Fibonacci.

The time of the Renaissance

The greatest Christian Mathematician of medieval times, Leonardo
Pisano (born at Pisa at the end of the 12th century), wrote a work
entitled Practica geometriae, in 1220, in which he improved on the
results of Archimedes, using the same method of employing the in-
1440

——=31427 and
4581

and circum-scribed 96agons. His limits are
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1440 _ 3'1410..., whereas 31 = 31428, 339 =3'1408... were the values
458% !

given by Archimedes. From these limits he chose ﬁg—g or ==3'1418...
]

8

as the mean result.

During the period of the Renaissance no further progress in the
problem was made beyond that due to Leonardo Pisano; some later
writers still thought that 34 was the exact value of =. George
Purbach (1423—1461), who constructed a new and more exact table
of sines of angles at intervals of 10, was acquainted with the
Archimedean and Indian values, which he fully recognized to be
approximations only. He expressed doubts as to whether an exact
value exists. Cardinal Nicholas of Cusa (1401—1464) obtained
= = 3'1423 which he thought to be the exact value. His approximations
and methods were criticized by Regiomontanus (Johannes Miller, 1436—
1476), a great mathematician who was the first to shew how to calculate
the sides of a spherical triangle from the angles, and who calculated
extensive tables of sines and tangents, employing for the first time
the decimal instead of the sexagesimal notation.

The fifteenth and sizteenth centuries

In the fifteenth and sixteenth centuries great improvements in
trigonometry were introduced by Copernicus (1473-—1543), Rheticus
(1514—1576), Pitiscus (1561-—1613), and Johannes Kepler (1571—
1630).

These improvements are of importance in relation to our problem,
as forming a necessary part of the preparation for the analytical
developments of the second period.

In this period Leonardo da Vincr (1452—1519) and Albrecht
Diirer (1471—1528) should be mentioned, on account of their celebrity,
as occupying themselves with our subject, without however adding
anything to the knowledge of it.

Orontius Finaeus (1494—1555) 1 a work De rebus mathematices
hactenus desiratis, published after his death, gave two theorems which
were later established by Huyghens, and employed them to obtain the
limits 22, 238 for =; he appears to have asserted that 3% is the exact
value. His theorems when generalized are expressed in our notation

by the fact that 8 is approximately equal to (sin?6 tan 0)5.
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The development of the theory of equations which later became of
fundamental importance in relation to our problem was due to the
Italian Mathematicians of the 16th century, Tartaglia (1506—1559),
Cardano (1501—1576), and Ferrari (1522—1565).

The first to obtain a more exact value of = than those hitherto
known in Europe was Adriaen Anthonisz (1527—1607) who rediscovered
the Chinese value == 255 =31415929..., which is correct to 6 decimal
places. His son Adriaen who took the name of Metius (1571—1635),
published this value in 1625, and explained that his father had
obtained the approximations 233 <7 <3217 by the method of Archi-
medes, and had then taken the mean of the numerators and denom--
nators, thus obtaining his value.

The first explicit expression for = by an infinite sequence of
operations was obtained by Vieta (Francois Viete, 1540—1603). He
proved that, if two regular polygouns are inscribed in a circle, the first
having half the number of sides of the second, then the area of the
first is to that of the second as the supplementary chord of a side of
the first polygon 1is to the diameter of the circle. Taking a square, an
octagon, then polygons of 16, 32, ... sides, he expressed the supple-
mentary chord of the side of each, and thus obtained the ratio of the
ares, of each polygon to that of the next. He found that, if the
diameter be taken as unity, the area of the circle 1s

1
2 — —,
VIVE+EVEV e 3VE 3 E

from which we obtain

T 1
2 JiVyei b

It may be observed that this expression is obtainable from the formnula

6= sin 0 (6 <)
Co8 ‘é cOS 1 COS ‘8- ies
afterwards obtained by Euler, by taking 6 = g

Applying the method of Archimedes, starting with a hexagon and
proceeding to a polygon of 2.6 sides, Vieta shewed that, if the
diameter of the circle be 100000, the circumference is > 314159352

and 1s < 3'14159325%3%; he thus obtained = correct to 9 places of
decinals.
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Adrianus Romanus (Adriaen van Rooman, born in Lyons, 1561—
1615) by the help of a 15. 2%agon calculated = to 15 places of decimals.
Ludolf van Ceulen (Cologne) (1539——1610), after Whom the nnmber
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x 15 still called in Germany “ Ludolph’s number,” is said to have
calculated = to 35 places of decimals. According to his wish the value
was engraved on his tombstone which has been lost. In his writing
Van den Cirkel (Delft, 1596) he explained how, by employing the
method of Archimedes, using in- and circum-scribed polygons np to
the 60.2%agon, he obtained = to 20 decimal places. Later, in his
work De Arithmetische en Geometrische fondamenten he obtained the
limits given by

3_1415928535 9793238 284338327950
Y05000000000000000000003000000000)
and the same expression with 1 instead of 0 in the last place of the

numerator.

The work of Snellius and Huyghens

In a work Cyclometricus, published in 1621, Willebrod Snellius
(1580—1626) shewed how narrower limits can be determined, without
increasing the number of sides of the polygons, than in the method of
Archimedes. The two theorems, equivalent to the approximations

4 (2 sin 6 +tan 0) < 6.< 3/(2 cosec 6 + cot 6),

by which he attained this result were not strictly proved by him, and
were afterwards established by Huyghens; the approximate formula
g = Qis‘;zseg had been already obtained by Nicholas of Cusa (1401—
1464). Using in- and circum-sceribed hexagons the limts 3 and 3-464
are obtained by the method of Archimedes, but Snellius obtained from
the hexagons the limits 3:14022 and 3:14160, closer than those obtained
by Archimedes from the 96agon. With the 96agon he found the
limits 3:1415926272 and 3:1415928320. Finally he verified Ludolf’s
determination with a great saving of labour, obtaining 34 places with
the 2%agon, by which Ludolf had only obtained 14 places. Grunberger*
calculated 39 places by the help of the formulae of Snellius.

The extreme limit of what can be obtained on the geometrical lines
laid down by Archimedes was reached in the work of Christian
Huyghens (1629—1665). In his work t De circuli magnitudine inventa,

* Elementa Trigonometriae, Rome, 1630.
t A study of the German Translation by Rudio will repay the trouble.
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which is a model of geometrical reasoning, he undertakes by improved
methods to make a careful determination of the area of a circle. He
establishes sixteen theorems by geometrical processes, and shews that

vanarne nfF hie thanrame thraa f1moee oc manv hlanne nf dacimale
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can be obtained as by the older method. The determination made by
Archimedes he can get from the triangle alone. The hexagon gives
him the linits 3:1415926533 and 3°1415926538.

The following are the theorems proved by Huyghens :

I. If ABC is the greatest triangle in a segment less than a
semi-circle, then

AABC<4 (6 AEB+ 0 BFC), E
where AFEB, BFC are the greatest
_________ £

P

blldallglt‘,b lll bllt‘; bﬁg[llﬂllbb AD, DU

o
%
)

Fia. 5.

II. AaFEG>1%10A4BC,
where 4 BC is the greatest tri-
angle in the segment. % \

Fia. 6.

1 segment ACB _

8
AACB 3
provided the segment is less than /\
the semi-circle.
A C

This theorem had already been
given by Hero.

T
segment ACHB
V. LATC % 5
A C

Fia. 8.

Fia. 7.
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V. If A, is the area of an inscribed regular polygon of »n sides,
and 8 the area of the circle, then 8> 4., + 3 (4., — 4,).

VI. If 4, 1s the area of the circumscribed regular polygon of
n sides, then S<24,'+14,.

VII. If C, denotes the perimeter of the 1nseribed polygon, and C
the circumference of the circle, then C'> €y, + L (C,, ~ C,).

E
VIIL 20D + L EF > arc CFE, 7

where £ 1s any point on the circle, B( / \

p -
m
0

Fig. 9.
IX. C<30C,+10),
where C,’ 1s the perimeter of the circumscribed polygon of n sides.

X. If a,, a, denote the sides of the in- and circum-scribed
polygons, then a,’=a,, . a,.

XI. C<the smaller of the two mean proportionals between O,
and C,.

S <the similar polygon whose perimeter is the larger of the two
mean proportionals.

c
XII. If ED equals the radius /%B

of the circle, then BG > arec BF. E

Fia. 10.
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-

e

e

p5<
XIIT. If AC =radius of /
the circle, then BL <arc BE. 1

G A

Fic. 11.
B

X1V. If G is the centroid of
L SeoTn .|. J.Ln /

LIl 5 en vIiEll T
BG>GD and <3GD. / 1e x

O
Fig. 12.
B
A / _ c

segment 4 BC 4
Xv. L ABC T3

BD 10

i _ T

and <33 BB 130D

XVI. If a denote the are
(< semi-circle), and s, s’ its sine and
its chord respectively, then

s’—s{a{s, N §—s 45 +s
3 3 2 +3s

This 1s equivalent, as Huyghens
points out, to

!

s +

P~ Pn 4o + P
3 2Pon + 30

< Pgp +

Fi1a. 14,
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where p, is the perimeter of a regular inscribed polygon of n sides, and
' 1s the circumference of the cirele,

T'he work of Gregory

The last Mathematician to be mentioned in connection with the
development of the method of Archimedes is James Gregory (1638—
1675), Professor in the Universities of St Andrews and Edinburgh,
whose important work in connection with the development of the new
Analysis we shall have to refer to later. Instead of employing the
perimeters of successive polygons, he calculated their areas, using

the formulae

24,4, 24, A,

A, + Ay A+ An

where 4,, A, denote the areas of in- and circum-scribed regular
n-agons ; he also employed the formula A,, = VA, A4, which had been
obtained by Snellius. In his work Ezercitationes geometricae published
in 1668, he gave a whole series of formulae for approximations on the
lines of Archimedes. But the most interesting step which Gregory
took in connection with the problem was his attempt to prove, by
means of the Archimedean algorithm, that the quadrature of the circle
is impossible.  This is contained in his work Vera circuli et hyperbolae
quadratura which is reprinted in the works of Huyghens (Opera varia
I, pp. 315—328) who gave a refutation of Gregory’s proof. Huyghens
expressed his own conviction of the impossibility of the quadrature,
and in his controversy with Wallis remarked that it was not even
decided whether the area of the circle and the square of the diameter
are commensurable or not. In default of a theory of the distinetion
hetween algebraic and transcendental numbers, the failure of Gregory’s
proof was inevitable. Other such attempts were made by Lagny
(Paris Mém. 1727, p. 124), Saurin (Parws Mém. 1720), Newton
{Principia 1, 6, Lemma 28), and Waring (Proprictates algebraicarum
curvarum) who maintained that no algebraical oval 1s quadrable.
Euler also made some attempts in the same direction (Considerationes
cyclometricae, Novi Comm. Acad. Petrop. xvi, 1771); he observed
that the irrationality of = must first be established, but that this
would not of itself be sufficient to prove the impossibility of the
quadrature. Even as early as 1544, Michael Stifel, in his Arithmetic
integra, expressed the opinion that the construction is impossible. He
emphasized the distinction between a theoretical and a practical
construction.

A,
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The work of Descartes

The great Philosopher and Mathematician René Descartes (1596—
1650), of immortal fame as the inventor of coordinate geometry,
regarded the problem from a new point of view. A given straight kine
being taken as equal to the circumference of a circle he proposed to
determine the diameter by the following construction :

Take 4B one quarter of the given straight line. On A4 B describe
the square ABCD ; by a known process a point C; on A produced,
can be so determined that the rectangle BC,=}4ABCD. Again C,
can be so determined that rect. B,C,=}BC,; and so on indefimtely.
The diameter required is given by AB., where B, is the limit to

which B, By, B,, ... converge. To see the reason of this, we can
ahaow +hat A R 1{: tha r]1(nlmo+nr
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of the circle inseribed in ABCD,
that 4B, 1s the diameter of the ¢,
cirele circumseribed by the regular
octagon having the same peri-
meter as the square; and gene-
rally that A B, is the diameter of
the regular 2"*2-agon having the
same perimeter as the square. f B BB,
To verify this, let Fia. 15.

x,=AB,, r,=AB:
then by the constraction,

Ce

1
Fo

thns

T ('Z'n - xn_l) = 2

4z,
and this is satisfied by 2, = 2,, 2,“

. 4 . .
bm z, = 7" = diameter of the circle.

This process was considered later by Schwab (Gergonne’s Annales de
Math. vol. v1), and 1s known as the process of isometers.
This method is equivalent to the use of the infinite series

4 1 1
ﬂ_—tan4+ Qtans +4ta,n1—é+

which 1s a particular case of the formnla

1 1, 2 1 2 1, =z
z cotx_ﬁtang +ita,n4 8ta,n8 + .
due to Euler.
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The discovery of logarithms

One great invention made early in the seventeenth century must
be specially referred to; that of logarithms by John Napier (1550—
1617). The special importance of this invention in relation to our
subject 1s due to the fact of that essential connection between the
numbers 7 and ¢ which, after its discovery in the eighteenth century,
dominated the later theory of the number . The first announcement
of the discovery was made in Napier's Mirifici logarithmorum canonis
descriptio (Edinburgh, 1614), which contains an account of the nature
of logarithms, and a table giving natural sines and their logarithms
for every minute of the quadrant to seven or eight figures. These
logarithms are not what are now called Napieran or natural logarithms

(i.e. logarithms to the base g), n]f.hmlgh the former are n]nggl}f related

f o S bt L¥L &1 L) A MVaIASS IS LY Aw S AR - AR

with the latter. 'The connection between the two 1s
L

L=10"1og, 10" 107. 1, or #=10"¢ 17,
where ! denotes the logarithm to the base ¢, and L denotes Napier’s
logarithm. It shonld be observed that in Napier’s original theory of
logarithms, their connection with the number ¢ did not explicitly
appear. The logarithm was not defined as the inverse of an exponential
function ; indeed the exponential function and even the exponential
notation were not generally nsed by mathematicians till long afterwards.

Approximate constructions

A large number of approximate constructions for the rectification
and quadratnre of the circle have been given, some of which give very
close approximations. It will suffice to give here a few examples of
such constructions,

(1) The following construction for the approximate rectification
of the circle was given by Kochansky (Acta Eruditorum, 1685).

B J

D L
Fia. 16,

Let a length DL eqnal to 3 .radius be measured off on a tangent
to the circle ; let DA B be the diameter perpendicular to DL.
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Let J be on tbe tangent at B, and such that - BAJ =30°. Then
J L 1s approximately equal to the semi-circular are BCD. Taking the
radius as unity, 1t can easily be proved that

the correct value to four places of decimals.
(2) The value 352 = 3-141592... is correct to six decimal places.

Since 113-3% ?2%_2 g it can easily be constructed.
D
LN
E
F
A & & B
Fic. 17.

Let CD=1, CE=}, AF=1; and let FG be parallel to CD and

2
FHto EG; then AH~- 72;‘:8-5.
This construction was given by Jakob de Gelder (Griinert's Archiv,

vol. 7, 1849).
(3) At A make AB=(2+}) radius on the tangent at 4 and let

B(C = % . radius.

Fi1G. 18.
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On the diameter through A take 4D = OB, and draw DE parallel
to ocC. Then

Al}: :—f{—g =-1;§_; therefore AE =1r. 133/\/1 + (1;\2-:?'. gJﬁﬁ",
AU AU 0 J ¥ \Nd J 14 )
thus AF=7r. 62831839 ..., so that 4 £ is less than the circumference
of the circle by less than two millionths of the radius.

The rectangle with sides equal to AZ and half the radius 7 has
very approximately its area equal to that of the circle. This construe-
tion was given by Specht (Crelle’s Journal, vol. 3, p. 83).

(4) Let AOB be the diameter of a given circle. Let

OD=3r, OF=3r, OE=1r.

Describe the semi-circles DG E, A HF with DE and A F as diameters;
and let the perpendicular to A B through O cut them in G and H
respectively. The square of which the side 1s GH 1s approximately of
area equal to that of the circle.

/—G\

A D 0 E
H

Fia. 19.

We find that GH =r, 1777246 ..., and since o/ = 1'77245 we see
that GH 1s greater than the side of the square whose area is equal to
that of the circle by less than two hundred thousandths of the radius.



CHAPTER 111

THE SECOND PERIOD

The new Analysis

TrE foundations of the new Analysis were laid in the second half
of the seventeenth century when Newton (1642—1727) and Leibnitz
(1646-—1716) founded the Differential and Integral Calculus, the
ground having been to some extent prepared by the labours of
Huyghens, Fermat, Wallis, and others. By this great invention of
Newton and Leibnitz, and with the help of the brothers James Bernouilh
(1654—1705) and John Bernouilli (1667—1748), the ideas and
methods of Mathematicians underwent a radical transformation which
naturally had a profound effect upon our problem. The first effect
of the new Analysis was to replace the old geometrical or semi-
geometrical methods of calculating = by others in which analytical
expressions formed according to definite laws were used, and which
could be employed for the calculation of = to any assigned degree
of approximation.

The work of John Wallis

The first result of this kind was due to John Wallis (1616-—1703),
Undergraduate at Emmanuel College, Fellow of Queens’ College, and
afterwards Savilian Professor of Geometry at Oxford. He was the first
to formulate the modern arithmetic theory of limits, the fundamental
importance of which, however, has only during the last half century
received its due recognition ; it 18 now regarded as lying at the very
foundation of Analysis. Wallis gave in his Arithmetica Infinitorum

the expression
T 2 2 4 4 6 6 8 8

2 1°83'835°5°7T°7T°9°"
for = as an infinite product, and he shewed that the approximation
obtained by stopping at any fraction in the expression on the right is
w
_ _ 2
or improper. This expression was obtained by an ingenious method

in defect or in excess of the value — according as the fraction is proper
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depending upon the expression for g the area of a semi-circle of

1
diameter 1 as the definite integral [ﬂ Nz —a*dx. The expression has

the advantage over that of Vieta that the operations required by it
are all rational ones.
Lord Brouncker (1620—1684), the first President of the Royal

Society, communieated without proof to Wallis the expression

4 1 9 25 49

;=1+2+2+2+2+"
a proof of which was given by Wallis in his Arithmetica Infinitorum.
It was afterwards shewn by Euler that Wallis' formula could be
obtained from the development of the sine and cosine in infinite
products, and that Brouncker’s expression is a particular case of much
more general theorems.

*

The calculation of = by series

The expression from which most of the practical methods of
calculating = have been obtained is the series which, as we now write
it, is given by

tanlax=a -3+ 15— ... (-1=2=a=1).
This series was discovered by Gregory (1670) and afterwards indepen-
dently by Leibnitz (1673). In Gregory’s time the series was written as
a=1t-— ﬁ + —tf- — ...
372 5 7
where a, ¢, r denote the length of an are, the length of a tangent at
one extremity of the arc, and the radius of the circle ; the definition
of the tangent as a ratio had not yet been introduced.

The particular case
a 1 1

i == 1 - § -+ 'S —-—.
is known as Leibnitz’s series ; he discovered it in 1674 and published
it in 1682, with investigations relating to the representation of =, in
his work “De vera proportione circuli ad quadratum circumscriptum
in numeris rationalibus.” The series was, however, known previously

to Newton and Gregory.

By substituting the values g, g, i%’ Iﬂ:} in Gregory’s series, the
calculation of 7 up to 72 places was carried out by Abraham Sharp under
instructions from Halley (Sherwin's Mathematical Tables, 1705, 1706).
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The more quickly convergent series

sin~'x = a + 1 x3 1.32 +
2372.45°
discovered u‘_y' Newton, i1s troublesome for purposes of calculati on,

owing to the form of the coefficients. By taking # =14, Newton
himself calculated = to 14 places of decimals.

Euler and others occupied themselves in deducing from Gtregory’s
series formulae by which = could be calculated by means of rapidly
converging series.

Euler, in 1737, employed special cases of the formula

ta,n‘ll =tan? 1 +tan™! —F—r0 g ,
p p+q p+pg+l
and gave the general expression
tan— £ = tan-1 Z¥7Y 4 gan b-a + tan™! o—b + .
Y ay + & ab+1 ch+1 ’
from which more such formulae could be obtained. As an example,
we have, if @, b, ¢, ... are taken to be the uneven numbers, and
T_1,
Y

T_ —11 —1_1_ -1 1
4—ta,n 2+ta,11 2.4+ta.n 2.9

In the year 1706, Machin (1680—1752), Professor of Astronomy
in London, employed the series

m 4(1 1 1 _ 1 )
1 *\573 3 58 1.5

B ( 11 . 11 . )
239 5.239% 5.239% 7.239" )
which follows from the rela,tion

+ ...

1 1
— -1~ _tap-t o
4 =4 tan 5 tan 539’

to calculate = to 100 places of decimals. This is a very convenient

expression, because in the first series 5 513,
4 64

100° 1000000 &c., and the second series is very rapidly convergent.

can be replaced by

In 1719, de Lagny (1660—1734), of Paris, determined in two
different ways the value of = up to 127 decimal places. Vega (1754—
1802) calculated = to 140 places, by means of the formulae

T o] N NEPUTINES TS |
1 5 tan 7+21:a,n 79—2ta,n 3+ta.n 7
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due to Euler, and shewed that de Lagny’s determination was correct
with the exception of the 113th place, which should be 8 instead of 7.
Clausen calculated in 1847, 248 places of decimals by the use of

Machin’s formula and the formula

T o1 .1
i 2 tan 3 + tan 7
In 1841, 208 places, of which 152 are correct, were calculated by
Rutherford by means of the formula
T_ al a1 o 1
4--41:an 5 tan 70+tan 99 "
In 1844 an expert reckoner, Zacharias Dase, employed the formula

m

4
=4

= tan™! ;1)- + tan™! ;1: +tan™!

1

) J 8 ’
supplied to him by Prof. Schultz, of Vienna, to caleulate = to 200
places of decimals, a feat which he performed in two months.

In 1853 Rutherford gave 440 places of decimals, and in the same
year W. Shanks gave first 530 and then 607 places (Proc. B. 8., 1853).

Richter, working independently, gave in 1853 and 1855, first 333,
then 400 and finally 500 places.

Finally, W. Shanks, working with Machin’s formula, gave (1873—
74) 707 places of decimals.

Another series which has also been employed for the calculation

of = 1s the series

T vt e S 11 £ R Ly }‘
LT T T3y s s\0+e) T s i\dae Tl

This was given in the year 1755 by Euler, who, applying it in the
formula

7 =20tan"' 3 + 8tan~' 7,

caleulated = to 20 places, in one hour as he states. The same series

was also discovered independently by Ch. Hutton (Pkil. Trans.,

1776). It was later rediscovered by J. Thomson and by De Morgan.
An expression for = given by Euler may here be noticed ; taking

the 1dentity
z dx T xdx 2dzx

[ 2 X
-1_%_ _ Redihated
tan 2-a 2]; i+ 2 0 4+x"‘+jo 4+ 2
he developed the integrals in series, then put =1, =%, obtaining
series for tan=*4, tan~'}, which he substituted in the formula

T _ al a1
4_21:a,n 3+ta,n 7
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In China a work was published by Imperial order in 1713 which
contained a chapter on the quadrature of the circle where the first

19 figures in the value of = are given.
At the l'mcr‘lnn'lnrr of the eighteenth centurv. anslvtical methods

- kY WELN & LW WAL VJAUMLJ I..Iu.J L¥E ANy

were 1ntr0duced into China by Tu Té-mei (Pierre Jartoux) a French
missionary ; it is, however, not known how much of his work 1g
original, or whether he borrowed the formulae he gave directly from
Earopean Mathematicians.

One of his series

7—3(1+ o, 1y 1ngE )
B 4.6 4.6.8.10 4.6.8.10.12.14 "

was employed at the beginning of the nineteenth century by Chu-

ﬂnng for ‘H\n Pn]nn]nhnq n‘F o Rw H'pq means 25 correct ﬁr\r ToS were

avra AR A Wl AR AN R 5

obtained.

Tséng Chi-hung, who died in 1877, published values of = and 1/=
to 100 places. He is said to have obtained his value of = in a month,
by means of the formula

and Gregory’s series.

In Japan, where a considerable school of Mathematics was
developed in the eighteenth century, = was calculated by Takebe in
1722 to 41 places, by employment of the regular 1024agon. It was
caleculated by Matsunaga in 1739 to 50 places by means of the same
series as had been employed by Chu-Hung.

The rational values 7 =8319381 7= ig%g%gf%?%?%i%, correct to
12 and 30 decimal places respectively, were given by Arima in 1766.

Kurushima Yoshita (died 1757) gave for =' the approximate

values 227 10748 10075 98548

I3y 71087y "I1TIZ2 » "OBBST
Tanyem Shokei published in 1728 the series

1 1.4 1.4.9
W’: LB X ]
8(1+6+6 15 6.15.28 " )

2 2.8 2.8.18
e 2
4(1+6+6.15+6.15.28+ )

due to Takebe, and ultimately to Jartoux,
The following series published in 1789 by Matsunaga may be
mentioned :

72=9(1+ I’ + .2 + ®.2.5 +
3.4 3.4.5.6 3.4.5.6.7.8 )
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The work of FKuler

Developments of the most far-reaching importance in connection
with our subject were made by Leonhard Euler, one of the greatest
Analysts of all time, who was born at Basel in 1707 and died at
St Petersburg in 1783. With his vast influence on the development
of Mathematical Analysis in general it is impossible here to deal, but
some account must be given of those of his discoveries which come
into relation with our problem.

The very form of modern Trigonometry is due to Euler. He
introduced the practice of denoting each of the sides and angles of a
triangle by a single letter, and he introduced the short designation of
the trigonometrical ratios by sin a, cos a, tan a, &c. Before Euler’s
time there was great prolixity in the statement of propositions, owing
to the custom of denoting these expressions by words, or by letters
specially introduced in the statement. The habit of denoting the
ratio of the circumference to the diameter of a circle by the letter =,
and the base of the natural system of logarithms by e, is due to the
influence of the works of Euler, although the notation = appears as
early as 1706, when it was used by William Jones in the Synopsis
palmariorum Matheseos. In Enler’s earlier work he frequently used
p instead of w, but by about 1740 the letter = was used not only
by Euler but by other Mathematicians with whom he was in
correspondence.

A most important 1mprovement which had a great effect not only
upon the form of Trigonometry but also on Analysis in general was the
introduction by Euler of the definition of the trigonometrical ratios in
order to replace the old sine, cosine, tangent, &c., which were the
lengths of straight lines connected with the circular are. Thus these
trigonometrical ratios became functions of an angular magnitude, and
therefore numbers, instead of lengths of lines related by equations
with the radius of the circle. This very important improvement was
not generally introduced into our text books until the latter half of
the nineteenth century.

This mode of regarding the trigonometrical ratios as analytic
functions led Euler to one of his greatest discoveries, the connection
of these functions with the exponential function. On the basis of the
definition of ¢ by means of the series

) 2 2
+z+§~i+-3+—i+...,
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he set up the relations
ei:: + e-ia: . . ef:c — e—t‘::c
9 ’ '_—2___ )

COsS ¥ =

which can also be written
F*=cosx+isinx, e T=cosx—isng,

The relation ¢"=—1, which Fuler obtained by putting x=, is
the fundamental relation between the two numbers = and ¢ which was
indispensable later on in making out the true nature of the number =

In his very numerous memoirs, and especially in his great work,
Introductio in analysin infinitorum (1748), Euler displayed the most
wonderful skill in obtaining a rich harvest of results of great interest,
largely dependent on his theory of the exponential function. Hardly
any other work in the history of Mathematical Science gives to the
reader so strong an impression of the genius of the author as the
Introductio. Many of the results given in that work are obtained by
bold generalizations, in default of proofs which would now be regarded
as completely rigorous ; but this it has in common with a large part of all
Mathematical discoveries, which are often due to a species of divining
intuition, the rigorous demonstrations and the necessary restrictions
coming later. In particular there may be mentioned the expressions
for the sine and cosine functions as infinite products, and a great
number of series and products deduced from these expressions ; also a
number of expressions relating the number ¢ with continued fractions
which were afterwards used in connection with the investigation of the
nature of that number.

(rreat as the progress thus made was, regarded as preparatory to
a 'ution of our problem, nothing definite as to the true nature of the
number = was as yet established, although Mathematicians were con-
yinced that ¢ and = are not roots of algebraic equations. FEuler
himself gave expression to the conviction that this is the case. Some-
what later, Legendre gave even more distinet expression to this view
in his Eléments de Géométrie (1794), where he writes : “It is probable
that the number = i1s not even contained among the algebraical
irrationalities, 7.e. that it cannot be a root of an algebraical equation
with a finite number of terms, whose coefficients are rational. But it
seems to be very difficult to prove this strictly.”
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THE THIRD PERIOD

The irrationality of = and ¢

TrE third and final period in the history of the problem is concerned
with the investigation of the real nature of the number =. Owing to
the close connection of this number with the number ¢, the base of
natural logarithms, the investigation of the nature of the two numbers
was to a large extent carried out at the same time.

The first investigation, of fundamental importance, was that of
J. H. Lambert (1728-—1777), who in his “Mémoire sur quelques
propriétés remarquables des quantités transcendentes circulaires et
logarithmiques ” (Hest. de I Acad. de Berlin, 1761, printed in 1768),
proved that ¢ and = are irrational numbers. His investigations are
given also 1n his treatise Vorldufige Kenntnisse fiuir die, so die
Quadratur und Rektification des Zirkels suchen, published in 1766.

He obtained the two continued fractions

F-1 1 1 1 1
€ +1 2/z+6Jz+10/z+ 4fx+ ...

1 1 1 1
tan z =

1o -3/x—5/x—Tx—...0
which are closely related with continued fractions obtained by FKuler,
but the convergence of which Euler had not established. As the
result of an investigation of the properties of these continued fractions,
Lambert established the following theorems :

(1) If # is a rational number, different from zero, ¢° cannot be
a rational number.

(2) If ais a rational number, different from zero, tan « cannot be
a rational number.

If #=}=, we have tana=1, and therefore }w, or =, cannot be
a rational number.
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It has frequently been stated that the first rigorous proof of
Lambert’s resnlts is due to Legendre (1752—1833), who proved these
theorems in his Eléments de Géomdtrie (1794), by the same method,
and added a proof that =* is an irrational number. The essential
rigour of Lambert’s proof has however been pointed out by Pringsheim
(Minch. Akad. Ber., Kl. 28 1898), who has supplemented the
investigation in respect of the convergence.

A proof of the irrationality of = and =* due to Hermite (Crelle’s
Journal, vol. 76, 1873) 1s of interest, both in relation to the proof of
Lambert, and as containing the germ of the later proof of the
transcendency of e and =.

A simple proof of the irrationality of ¢ was given by Fourier
(Stainville, Mélanges d’analyse, 1815), by means of the series

1 1 1

11 ? + '3-*' + ...
which represents the number. This proof can be extended to shew
that & is also irrational. On the same lines it was proved by Liouville
(1809—1882) (Liouwille's Journal, vol. 5, 1840) that neither ¢ nor ¢
can be a root of a quadratic equation with rational coefficients. This
last theorem is of importance as forming the first step in the proof
that ¢ and = cannot be roots of any algebraic equation with rational
coefficients. The probability had been already recognized by Legendre
that there exist numbers which have this property.

Existence of transcendental numbers

The confirmation of this surmised existence of such numbers was
obtained by Liouville in 1840, who by an investigation of the properties
of the convergents of a continued fraction which represents a root of
an algebraical equation, and also by another method, proved that
numbers can be defined which cannot be the root of any dlgebraical
equation with rational coefficients.

The simpler of Liouville’s methods of proving the existence of such
numbers will be here given.

Let @ be a real root of the algebraic equation

az® + ba" '+ a4+ ... =0,
with coefficients which are all positive or negative integers. We shall

assume that this equation has all its roots unequal; if it had equal
roots we might suppose 1t to be cleared of them in the usual manner.
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Let the other roots be denoted by &y, 2, ... ., ; these may be real or

complex. If }—; be any rational fraction, we have

P o= ap® +bp" g +cpt Tl g + ...

Rl e

If now we have a sequence of rational fractions converging to the

value & as limit, but none of thein equal to z, and if % be one of these

(-2) - (3=

(x—a)(x—a) ... (- &a).

fractions,

We may therefore suppose that for all the fractions g ,

+(-e) ) (=)

is numerically less than some fixed positive number 4. Also
ap" + bp" g+ ...

is an integer numerically = 1 ; therefore

P-a|>

This must hold for all the fractions EOf such a sequence, from and

after some fixed element of the sequence, for some fixed number A.
If now a number & can be so defined such that, however far we go in

the sequence of fractions 2, and however 4 be chosen, there exist
fractions belonging to the.sequence for which }-q—)-:v < A;’” it may

be concluded that & cannot be a root of an eguation of degree » with
integral coefficients. Moreover, if we can shew that this is the case
whatever value » may have, we conclude that & cannot be a root of
any algebraic equation with rational coefficients.

Consider a number

£ =

1;@*
+
+
+

b,
r]
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where the integers &, k., ... kn, ... are all less than the integer r, and
do not all vanish from and after a fixed value of m.
Let p:ﬂ.+i—i‘%+...+@.,
q ?AL. T‘I. rll’l.

then ? continually approaches « as m is increased. We have

P kna | ke
z = pminl T omia

q

+ ...

1 1
<7 ;__(”H'l” +?‘m! + ...

-

ro .
< ——, slnce ¢ =1
7

Jnl
m+1? '

It is clear that, whatever values A and » may have, if m, and

therefore ¢, is large enough, we have q?:” < Alqﬁ ; and thus the

P
relation . x ‘ > ir
numbers # 5o defined are therefore transcendental. If we take » = 10,
we see how to define transcendental numbers that are expressed as
decimals.

This important result provided a complete justification of the
division of numbers into two classes, algebraical numbers, and trans-
cendental numbers; the latter being characterized by the property
that such a number cannot be a root of an algebraical equation of any
degree whatever, of which the coefficients are rational numbers.

A proof of this fundamentally important distinetion, depending on
entirely different principles, was given by G. Cantor (Crelles Journal,
vol. 77, 1874) who shewed that the algebraical numbers form an
enumerable aggregate, that is to say that they are capable of being
counted by means of the integer sequence 1, 2, 3, ..., whereas the
aggregate of all real numbers is not enumerable. He shewed how
numbers can be defined which certainly do not belong to the sequence
of algebraic numbers, and are therefore transcendental.

This distinction between algebraic and transcendental numbers
being recognized, the question now arose, as regards any particular
number defined in an analytical manner, to which of the two classes it
belongs ; in particular whether = and ¢ are algebraic or transcendental.
The difficulty of answering such a question arises from the fact that
the recognition of the distinction between the two classes of numbers

is not satisfied for all the fractions g The
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does not of itself provide a readily applicable criterion by the use of
which the question may be answered in respect of a particular number.

The scope of Fuclidean determinations

Before proceeding to describe the manner in which it was finally
<hewn that the number = is a transcendental number, 1t 1s desirable to
explain in what way this result is connected with the problems of the
quadrature and rectification of the circle by means of Euchdean
determinations.

The development of Analytical Geometry has made it possible to
replace every geometrical problem by a corresponding analytical one
which involves only numbers and their relations. As we have already
remarked, every Euclidean problem of what is called construction
consists essentially in the determination of one or more points which
shall satisfy certain prescribed relations with regard to a certain finite
number of assigned points, the data of the problem. Such a problem
has as its analytical counterpart the determination of a number, or
a finite set of numbers, which shall satisfy certain preseribed relations
relatively to a given set of numbers. The determination of the required
numbers is always made by means of a set of algebraical equations.

The development of the theory of algebraical equations, especially
that due to Abel, Gauss, and Galois, led the Mathematicians of the last
century to scrutinize with care the limits of the possibility of solving
geometrical problems subject to prescribed hmitations as to the nature
of the geometrical operations regarded as admissible. In particular,
it has been ascertained what classes of geometrical problems are
capable of solution when operations equivalent in practical geometry
to the use of certain instruments are admitted*. The investigations
have led to the discovery of cases such as that of inscribing a regular
polygon of 17 sides in a circle, in which a problem, not previously
known to be capable of solution by Euclidean means, has been shewn
to be so.

We shall here give an account of as much of the theory of this
subject as is necessary for the purpose of application to the theory of
the quadrature and rectification of the circle.

In the first place we observe that, having given two or more points
in a plane, a Cartesian set of axes can be constructed by means of a

* An interesting detailed account of investigations of this kind will be found in
Euriques’ Questions of Elementary Geometry, German Edition, 1907.
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Euclidean construction, for example by bisecting the segment of the
line on which two of the given points are incident, and then determining

a perpendicular to that segment. We may therefore assume that
a given set of points, the data of a Euclidean problem. are specified by

AR AL | i | SL{uEy I AsvaviaaNaivAs RV AVALLy AU WpVWRALALAL T

means of a set of numbers, the coordinates of these points.

The determination of a required point P is, in a Euclidean
problem, made by means of a finite number of applications of the three
processes, (1) of determining a new point as the intersection of straight
lines given each by a pair of points already determined, (2) of
determining & new point as an intersection of a straight line given by
two points and a circle given by its centre and one point on the
circumference, all four points having been already determined, and
(8) of determining a new point as an intersection of two circles which
are determined by four points already determined.

In the analytical interpretation we have an original set of numbers
@y, s, --- &g given, the coordinates of the r given points; (r = 2).
At each successive stage of the geometrical process we determine two
new numbers, the coordinates of a fresh point.

When a certain stage of the process has been completed, the data
for the next step consist of numbers (a,, @, ... @) containing the
original data and those numbers which have been already ascertained
by the successive stages of the process already carried out.

If (1) is employed for the next step of the geometrical process, the
new point determined by that step corresponds to numbers determined

by two equations
Az+By+(C=0, Az+By+C =

where A, B, C, A", B, C' are rational functions of eight of the
numbers (a;, @s, --- @»,). Therefore 2, ¥ the coordinates of the new
point determined by this step are rational functions of a,, @,, ... @a.
In order to get the data for the next step afterwards, we have only
to add to @, @, ... @&, these two rational functions of eight of them.
If case (2) is employed, the next point is determined by two
equations of the form

(z—ap)’ + (y— ) =(a, — @) + (@ — au)',
Y =mx+n,
where m, n are rational functions of four of the numbers a,, a,, ... a,,.

On elimination of y, we have a quadratic equation for z; and thus z
is determined as a quadratic irrational function of (@, as, ... @), of
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the form A + /B, where A and B are rational functions; it is clear
that ¥ will be determined in a similar way.
If, in the new step, (3) 18 employed the equations for determining

nr\-\r“ﬂ «‘-‘ busrn Aoeren ‘- Fa% a¥s] A ]ﬁ rﬂﬂm
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(2= ) +(y— ) = (a4 — @)’ + (@~ aw)’;
on subtracting these equations, we obtain a linear equation, and thus
it is clear that this case is essentially similar to that in which (2) is
employed, so far as the form of #, ¥ is concerned.
Since the determination of a required point P is to be made by
a finite number of such steps, we see that the coordinates of P are
determined by means of a finite succession of operations on

(@1, Gy -+ Bor),

the coordinates of the points; each of these operations consists either
of a rational operation, or of one involving the process of taking
a square root of a rational function as well as a rational operation.

We have now established the following result :

In order that a point P can be determined by the Euclidean mode it
is necessary and sufficient that its coordinates can be expressed as such
Functions of the coordinates (a,, as, ... ay) of the given points of the
problem, as involve the successive performance, a fintte number of times,
of operations whick are either rational or involve taking a square root of
a rational function of the elements already determined.

That the condition stated in this theorem is necessary has been
proved above ; that it is sufficient is seen from the fact that a single
rational operation, and the single operation of taking a square root of
a number already known, are both operations which correspond to
possible Euclidean determinations.

The condition stated in the result just obtalned may be put in
another form more immediately available for application, The ex-
pression for a coordinate z of the pomnt P may, by the ordinary
processes for the simplification of surd expressions, by getting rid of
surds from the denominators of fractions, be reduced to the form

a:=a+chli\/cgi NZN +b'Jc,'i Ve  + Nes + ... + .

where all the numbers

r " t
a, bs 6'1, 62: i b: 01, cﬂs e

are rational functions of the given numbers (@i, s, ... @), and the
number of successive square roots is in every term finite. Let m be
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the greatest number of successive square roots in any term of 2 ; this
may be called the rank of z.  We may then write

z=a+bNB+bV B + ...
where B, 5, ... are all of rank not greater than m —1. We can form
an equation which 2 satisfies, and such that all its coefficients are
rational functions of a, b, &', B, B’ ...; for ¥ B may be eliminated by
taking (z—a — b VB - ... =B, and this is of the form

P,+JEBP, =0,
from which we form the bigquadratic
Pr—BP2=)0,

in which /B does not occur. Proceeding in this way we obtain an
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are rational functions of @, &, B, B, ..., and are therefore of rank
=m—1. This equation is of the form

Lix*+ Lya” '+ ...=0,
where L,, L,, ... are at most of rank m—-1. If L,, L,, ... involve
a radical VK, the equation is of the form
JE (ba® + )+ (bie® + ..) =0,
and we can as before reduce this to an equation of degree 2**! in which
~ K does not occur; by repeating the process for each radical like

VK, we may eliminate them all, and finally obtain an equation such
that the rank of every coefficient is = m — 2. By continual repetition
of this procedure we ultimately reach an equation, such that the
coefficients are all of rank zero, i.e. rational functions of (a,, @, ... @.).
We now see that the following result has been established :

In order that a point P may be determinable by Euclidean procedure
1t 18 necessary that each of its coordinates be a root of an equation of
some degree, a power of 2, of whichk the coefficients are rational functions
of (a1, @, ... @y, the coordinates of the points given in the data of the
problem.

From our investigation it is clear that only those algebraic equations
which are obtainable by elimination from a sequence of linear and
quadratic equations correspond to possible Euclidean problems.

The quadratic equations must consist of sets, those in the first set
having coefficients which are rational functions of the given numbers,
those in the second set having coefficients of rank at most 1; in the
next set the coeflicients have rank at most 2, and so on.
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The criterion thus obtained is sufficient, whenever it can be applied,
to determine whether a proposed Euclidean problem is a possible one
or not.

In the case of the rectification of the circle, we may assume t
the data of the problem consist simply of the two points (0, 0) and
(1, 0;, and that the point to be determined has the coordinates (w, 0).
This will, in accordance with the ecriterion obtained, be a possible
problem only if = is a root of an algebraic equation with rational
coefficients, of that special class which has roots expressible by means
of rational numbers and nzmbers obtainable by successive operations
of taking the square roots. 'The investigations of Abel have shewn
that this 18 only a special class of algebraic equations.

As we shall see, it 1s now known that =, being transcendental, is
not a root of any algebraic equation at all, and therefore in accordance
with the eriterion i1s not determinable by Euclidean construetion. The
problems of duplication of the cube, and of the trisection of an angle,
although they lead to algebraic equations, are not soluble by Euclidean
constructions, because the equations to which they lead are not in
general of the class referred to in the above criterion.

a8 mavy Q,Q‘.S‘I

The tramscendence of =

In 1873 Ch. Hermite* succeeded in proving that the number ¢ is

transcendental, that is that no equation of the form
ae™ +be" +cd +...=0

can subsist, where m, n, r, ... @, b, ¢, ... are whole numbers. In 1882,
the more general theorem was stated by Lindemann that such an
equation cannot hold, when m, n,r, ... @, b, ¢, ... are algebraic numbers,
not necessarily real; and the particular case that ¢ + 1 = 0 cannot be
satisfied by an algebraic number #, and therefore that « is not algebraic,
was completely proved by Lindemannt.

Lindemann’s general theorem may be stated in the following precise
form :

If @), %y, --- Tn are any real or complex algebraical nwmbers, all
distinct, and p,, Pz, ... pn are n algebraical numbers at least one of
which 1s different from zero, then the sum

PrLE5 + Pt o+ P ™
is certainly different from zero.

* ¢ Sur la fonetion exponentielle,” Comptes Rendus, vol. 77, 1873.
+ Ber. dkad. Berlin, 1882,
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The particular case of this theorem in which
?2-—_-2, ‘,‘vlziw’ 'T2=0: plzpﬁzls

shews that ¢ + 1 cannot be zero if # is an algebraic number, and thus
that, since e™ + 1 = 0, it, follows that the number = is transcendental.

From the general theorem there follow also the following important
results :

(1) Let n=2, p,=1, po=-a, 2,=z, 2:=0; then the equation
¢®—a =0 cannot hold if z and a are both algebraic numbers and 2 is
different from zero. Hence the exponential ¢ is transcendent if x is an
algebraic number different from zero. In particular e is transcendent.
Further, the natural logarithm of an algebraic number different from
zero is a transcendental number. The transcendence of ir and therefore
of m i3 a particular case of this theorem.

(2) Let n=3, py=—1, py=1t, ps=—2a, =12, Ty=—1i2, 2,=0;
it then follows that the equation sin z=a cannot be satisfied if @ and
x are both algebraic numbers different from zero. Hence, if sin 2 is
algebraic, x cannot be algebraic, unless #=0, and if a s algebraze,
sin~'a cannot be algebraie, unless a=0.

It 1s easily seen that a similar theorem holds for the cosine and the
other trigonometrical functions.

The fact that = is a transcendental number, combined with what
has been established above as regards the possibility of Euclidean
constructions or determinations with given data, affords the final
answer to the question whether the quadrature or the rectification of
the circle can be carried out in the Euclidean manner.

The quadrature and the rectification of a circle whose diameter is
gwen are impossivle, as problems to be solved by the processes of
Fuclidean Geometry, in which straight lines and circles are alone
employed tn the constructions.

It appears, however, that the transcendence of = establishes the
fact that the quadrature or the rectification of a circle whose diameter
is grven are imposstble by a comstruction in which the use only of
algebraic curves s allowed.

The special case (2) of Lindemann’s theorem throws light on the
interesting problems of the rectification of arcs of circles and of the
quadrature of sectors of circles. If we take the radius of a circle to be
unity then 2sin 42 is the length of the chord of an arc of which the
length is #. It has been shewn that 2sin 42 and # cannot both be
algebraic, unless z=0. We have therefore the following result :
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If the chord of a circle bears to the diameter a ratio whick is
algebraic, then the corresponding arc is not rectifiable by any construction
in which algebraic curves alone are employed; neither can the quadrature
of the corresponding sector of the circle be carried out by such a con-
struction.

The method employed by Hermite and Lindemann was of a com-
plicated character, involving the use of complex integration. The
method was very considerably simplified by Weierstrass¥®, who gave
a complete proof of Lindemann’s general theorem.

Proofs of the transcendence of ¢ and =, progressively simple in
character, were given by Stieltjest, Hilbert, Hurwitz and Gordan},
Mertens§, and Vahleni|.

All these proofs consist of a demonstration that an equation which
is Iinear in a number of exponential functions, such that the coefficients
are whole numbers, and the exponents algebraic numbers, is impossible.
By choosing a multiplier of the equation of such a character that its
employment reduces the given equation to the equation of the sum of
a pon-vanishing integer and a number proved to lie numerically
between 0 and 1 to zero, the impossibility is established.

Simplified presentations of the proofs will be found in Weber’s
Algebra, in Enriques’ Questions of Elementary Geometry (German
Edition, 1907), in Hobson’s Plane Trigonometry (second edition, 1911),
and in Art. 1X. of the “Monographs on Modern Mathematics,” édited
by J. W. A, Young.

Proof of the transcendence of =

The proof of the transcendence of = which will here be given is
founded upon that of Gordan.

(1) Let us assume that, if possible, = is a root of an algebraical
equation with integral coefficients ; then iz is also a root of such an
equation.

Assume that <7 1s a root of the equation

Cle—a)(@-05)... (2-a)=0,
where all the coefficients
C, C2a, C3a,a,, ..., Caja,...q,

* Ber. Akad, Berlin, 1885. + Comptes Rendus, Paris Acad. 1890.

1 These proofs are to be found in the Math. Annalen, vol. 43 (1896), by Hilbert,
Hurwitz and Gordan.

§ Wiener Ber. Kl. cv. Ila {1896). | Math. Annalen, vol. 53 (1900).

4-—3
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are positive or negative integers {including zero); thus one of the
numbers a,, ... a, 18 7.
From Euler’s equation €™ + 1 =0, we see that the relation

y L0y £ L™ s oa0eN £
\1-1‘6 )&1-1‘& S \L-r-& J=v

must hold, since one of the factors vamshes. If we multiply out the
factors in this equation, it clearly takes the form

A+PridPry . 4oPr=y,
where A is some positive integer (Z 1), being made up of 1 together
with those terms, if any, which are of the form e ¥ %+ - where
ap + ag+ ... =0,
@) A symmetrical function consisting of the sum of the produets

1 every ngs&lble way, of a fixed number of the numberg

Ca,, Cay, ... Cag, is an 1nteger. It will be proved that the symmetrical
functions of CB,, CB,, ... CB, have the same property. In order to
prove this we have need of the following lemma :

A symmetrical function consisting of the sums of the products
taken p together of a+ 8 +y +... letters

Xy, Ty Tay Yis Yo, - Y5 Py 2o, - 2y; &,
belonging to any number of separate sets, can be expressed in terms of
symmetrical functions of the letters in the separate sets.

It will be sufficient to prove this in the case in which there are
only two sets of letters, the extension to the general case being then
obvious.

Denote by 3 P (2, y) the sum of the products which we require to

4

o=
ol
~
4~
3
pud #
1=

express; and denote by 2P () the sum of the products of r dimensions

of the letters z;, #;, ... z. only. In case p < a, we see that
SP(z,y)= EP(:U)+?.P (¥) EIP(.T)+ ?P(_’y) 22}9 (@) +...;
p D p— p—

in case p> a, we see that
2P(z,y)

—EP(w) 2P (y)+ zP(x) 2 P+ 2P@) 2 Py)+.

p—a+2

and the terms on the rlght-hand side involve in each case only
symmetrical functions of the letters of the two separate sets; thus the
lemma, is established.

To apply this lemma, we observe that the numbers 8 fall into
separate sets, according to the way they are formed from the letters a.
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The general value of B consists of the sum of r of the letters
a,, 02, ... a5; and we consider those values of B that correspond to
a fixed value of ~ to belong to one set. It is clear that a symmetrical
funetion of those letters 8 which belong to one and the same set 1s
expressible as a symmetrical function of a;, @y, ... o,; therefore a
symmetrical function of the products CfB, where all the 8’s belong to
one and the same set, is in virtue of what has been established in (1)
an integer. Applying the above lemma to all the » numbers CB, we
see that the symmetrical products formed by all the numbers CB are
integral, or zero. We have supposed those of the numbers B which
vanish to be suppressed and the corresponding exponentials to be
absorbed in the integer 4 ; whether this is done before or after the
symmetrical functions of CB are formed makes no difference, so that
the above reasoning applies to the numbers 8 when those of them
which vanish are removed.

(3) Let p be a prime number greater than all the numbers 4, », C
(C"BiBs... Bnl; and let

B@)= o gy, O = B) (0 ) - (2= BV
We observe that ¢ (z) is of the form
(O (G = 0 (G + 4 (G = e+ (1P,
iv;h:liz %C,;,r?:, ... ¢ are integers. The function ¢ (2) may be expressed

b (2) = o1 @7 + 62T + o + Cnpypr &P

where ¢,_, (p—1)!, ¢,p!, ... are integral.

We see that ¢} (0)=(—1)"?C?¢,?, which 1s an integer not
divisible by p.

Also ¢7 (0) is the value when 2 =0 of

d
p=1 " no__ -1 r
P02 [(Coy - gu (Cay™+ ]

and 1s clearly an integer divisible by p. We see also that
$(?+1) (0)’ e (()), ... @UPTPL (0)

are all multiples of p.
Further if m = n, ¢ (8.), ¢ (Bn), -+- PV (B,) all vanish, and

m=mn

E] ot ( ﬂm), m;:: G(P+1) (Bm), es mg_?(f_,(n p+p~1) (Bm)



56 THE THIRD PERIOD

are all integers divisible by p. This follows from the fact that

2 (O’,Bm)" is expressible in terms of those symmetrical functions which

cons1st of the sums of products of the numbers CB,, CB,, ...; and
these expressions have integral values.

(4) Let K, denote the integer

(P-D!eputple+ . +(np+p—1)ic,yupi
which may be written in the form
¢2-U(0) + ¢P(0) + ... + ¢l"P+P=1 (),
In virtue of what has been established in (3) as to the values of
o771 (0), ¢ (0), ...

we see that K, 4 is not a multiple of p.

We examine the form to which the equation

+ePryoPit 4=

is rednced by multiplying all the terms by X,.
We have

KyéPr =

'f-np+p -1

Cr {Bm" +rB Tt r (= 1) B+ .. + )

Bm?‘ﬂ ﬂ r+2
Trel (9 r)(r+2) " }

=@ (Bn)+ ¢ (Bu) + ... + TP (B,)

r=np+p-1 ﬂ B
S 6B, { m m .
T et o »+ 1 (9‘+1)(9‘+2)+ }
The modulus of the sum of the series

Bm B?H
r+1 (9‘+1)(r+2)

r_p -1

does not exceed

Bul, 1Bl
r+1 (r+1)(r+ 2)

and this is less than e !#m! . ; hence we have

r ﬁhl Bm r
o T Gty =6 el

where 6, is some number whose modulus is between 0 and 1.
The modualus of

f—ﬂp-i-p 1 = -1
6, |c,.Bm"|e‘ﬁm is less than e!Bml npgp | Ba” |,

r—p -1 r=p-1
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or than
o1 B 01 (1 BB+ 1821 (1Bl + 1B DI
or than
e I DI AT

where 8 denotes the greatest of the numbers | 8,1, | B:], --- | Bal.
It thus appears that the modulus of
r=np+p-1 Bm
,.j_ Celn’ {r+1 (r+1)(r+2) }
is less than a number of the form P@*?/(p-1)!, where P and & are

nr]nhnnr]nnf. nf n gnr] nf m
1‘, uvyv““v‘-lu Vlf A AL ff¥a

We have now

Ky (A4S )= Ky + 3 (g0 (Ba) o+ 4B + L

where K, A is not a multiple of p, the second term is an integer
divisible by p, and L 1s less than nP@®/(p—1)!. The prime p may
be chosen so large that nP@*/(p —1)! is numerically less than unity.
Since K, (A + "s eﬁ”') is expressed as the sum of an integer which

m=1
does not vaunish and of a number numerically less than unity, it is

impossible that it can vanish. Having now shewn that no such
equation as

A+PrsdPry 4P =0

can subsist, we see that =¢ cannot be a root of an algebraic equation
with integral coefficients, and thns that = is transcendental.

It has thus been proved that = is a transcendental number, and
hence, taking into account the theorem proved on page 50, the im-
possibility of *squaring the circle ” has been effectively established.



