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Logically and algebraically homogeneous groups
Elena Aladova
Bar Ilan University, Ramat Gan, Israel
aladovael@mail.ru

Coauthors: Boris Plotkin, Eugene Plotkin

In our work we study algebraic structures within the frames of logical geom-
etry.

One of the working tools in universal algebra and model theory is homo-
geneity. In this context, we consider the homogeneity property for algebras, in
particular, for groups.

An algebra H is algebraically homogeneous if every isomorphism between two
of its finitely generated subalgebras can be extended up to an automorphism of
H.

The definition of logical homogeneity is based on the same idea as the no-
tion of algebraic homogeneity and will be given in the talk. Being close by their
nature, these notions have also a lot of distinction. Every algebraically homo-
geneous algebra is logically homogeneous. The inverse statement is not true:
two finitely generated free abelian groups are logically, but not algebraically
homogeneous.

The logical homogeneity can be described using the model-theoretical no-
tion of a type. Along with the model-theoretical types we consider logically-
geometrical types. The last ones provide the bridge between logic and geometry.

The talk is focused on logically homogeneous groups. We formulate some
results and discuss open problems.

New progress on factorized groups and subgroup permutability
Paz Arroyo-Jordá
Universidad Politécnica de Valencia
parroyo@mat.upv.es

Coauthors: Milagros Arroyo-Jordá, Ana Mart́ınez-Pastor (Universidad Politécnica
de Valencia) and M. Dolores Pérez-Ramos (Universitat de València).

The study of products of groups whose factors are linked by certain per-
mutability conditions has been the subject of fruitful investigations by a good
number of authors. A particular starting point was the interest in providing
criteria for products of supersoluble groups to be supersoluble. We take fur-
ther previous research on total and mutual permutability by considering signif-
icant weaker permutability hypotheses. The aim of this talk is to report about
new progress on structural properties of factorized groups within the consid-
ered topic. As a consequence, we discuss new attainments in the framework of
formation theory.
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Rational conjugacy of torsion units in integral group rings of non-
solvable groups
Andreas Bächle
Vrije Universiteit Brussel, Belgium
ABachle@vub.ac.be

Coauthors: Leo Margolis (University of Stuttgart, Germany)

We present a new method to examine rational conjugacy of torsion units in
integral group rings. The approach involves modular and integral representation
theory and is especially interesting when combined with the standard HeLP-
method. Let V(ZG) denote the group of augmentation one units of the integral
group ring ZG. We prove the following

Theorem. If G is PSL(2,19) or PSL(2,23), then all torsion units of V(ZG)
are conjugate within the corresponding rational group ring to an element of
the group. Furthermore, there are no units of order 6 in V(ZG) provided G is
isomorphic to M10, the Mathieu group of degree 10, or PGL(2,9).

The first part shows that the long-standing (first) Zassenhaus conjecture
holds for the groups mentioned. The second part completes the proof of a
theorem of W. Kimmerle and A. Konovalov stating that the prime graph of the
group G coincides with that one of the group of augmentation one units V(ZG),
provided the order of G is divisible by at most 3 different primes.

On Clifford-Fischer Theory
Ayoub B. M. Basheer
Universities of KwaZulu-Natal & Khartoum
ayoubbasheer@gmail.com

Coauthors: Jamshid Moori

Bernd Fischer presented a powerful and interesting technique, known as
Clifford-Fischer theory, for calculating the character tables of group extensions.
This technique derives its fundamentals from the Clifford theory. The present
article surveys the developments of Clifford-Fischer theory applied to group
extensions (split and non-split) and in particular we focus on the contributions
of the authors to this domain.
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Thompson-like groups acting on Julia sets
Jim Belk
Bard College
belk@bard.edu

Coauthors: Bradley Forrest

We describe a family of groups acting on Julia sets for certain quadratic
polynomials. These groups are similar to the Thompson groups F , T , and V , as
well as the diagram groups of Victor Guba and Mark Sapir. We will discuss the
action of these groups on certain cubical complexes, and the resulting finiteness
properties.

A generalisation on the solvability of finite groups with three class
sizes for normal subgroups
Antonio Beltrán
Universidad Jaume I de Castellón, Spain
abeltran@mat.uji.es

Coauthors: Maŕıa José Felipe

A renowned theorem by N. Itô asserts that groups having exactly three class
sizes are solvable. The proof of this result was improved by A. Camina and by J.
Rebmann and has virtually remained unchanged since the 70’s. In this talk, we
present a sketch of the proof of the following generalisation of Itôs theorem for
normal subgroups: If G is a finite group, then every normal subgroup of G that
has exactly three G-conjugacy class sizes is solvable. Our approach, which uses
the Classification of the Finite Simple Groups, has the advantage of enabling to
argue by induction.

Shift Dynamics and Asphericity for Cyclically Presented Groups
Bill Bogley
Oregon State University
bill.bogley@oregonstate.edu

For group presentations with cyclic symmetry, there is a connection between
asphericity of the (two-complex modeled on the) presentation and the dynamics
of the cyclic shift automorphism for the group defined by the presentation.
Specifically, if the presentation is combinatorially aspherical and orientable, then
the shift and its powers are fixed-point-free on the non-identity elements of the
group. For cyclic presentations with positive relators of length three, as studied
by M. Edjvet and G. Williams, the converse holds and moreover the shift itself
has a non-identity fixed point if and only if the group is finite.
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Approximate groups.
Emmanuel Breuillard
Universite Paris Sud Orsay
emmanuel.breuillard@math.u-psud.fr

Approximate groups are finite subsets of an ambient group G, which are
almost closed under multiplication. The notion was introduced by T. Tao in
2005 and has attracted a lot of attention in recent years, in part because of its
use in constructing new families of expander graphs. My lectures will attempt
to describe these recent developments.

Orbit coherence in permutation groups
John Britnell
Imperial College London
j.britnell@imperial.ac.uk

Coauthors: Mark Wildon (RHUL)

For a permutation g of a set X, let p(g) be the partition of X given by the
orbits of g. For a permutation group G on X, let p(G) be the set of partitions
p(g) for g in G. The set of all partitions of X forms a complete lattice under
the refinement order, and the subset p(G) inherits an order structure. I shall
talk about some recent work (joint with Mark Wildon) on permutation groups
G for which p(G) is an upper- or lower-subsemilattice.

Anisimov’s Theorem for Inverse Semigroups
Tara Brough
University of St Andrews
tara@mcs.st-and.ac.uk

Coauthors: Mark Kambites

An inverse semigroup is a semigroup in which every element has a unique
inverse (x is an inverse of y if xyx = x and yxy = y).

The seminal result in the study of word problems of groups considered as
formal languages was Anisimov’s Theorem (1971), which states that a group
has regular word problem if and only if it is finite. I will present two quite
different ways of generalising the group word problem to inverse semigroups,
both of which give rise to versions of Anisimov’s theorem, one due to myself
and the other to Mark Kambites.
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Schur sigma-groups
Michael R. Bush
Washington and Lee University
bushm@wlu.edu

Schur sigma-groups are a type of pro-p group with balanced presentation
and distinguished automorphism sigma, that were first identified by Koch and
Venkov in 1975. They arise as Galois groups in a natural way. I’ll discuss some
recent results and questions concerning these groups.

Permutation groups and transformation semigroups
Peter J. Cameron
University of St Andrews
pjc@mcs.st-and.ac.uk

Coauthors: João Araújo and others

I will talk about the way in which our knowledge of groups can help us
study semigroups; in particular, new results about permutation groups which
were motivated by applications to transformation semigroups.

In the first part of the talk, I discuss some recent results on the semigroups
〈a,G〉 \ G and 〈g−1ag : g ∈ G〉, where G is a permutation group and a a map
which is not a permutation. Typical questions are: when are these semigroups
equal? When, for given groups G and H, do they coincide? When do they have
nice properties such as regularity or idempotent-generation? These lead to ques-
tions about new concepts in permutation group theory such as λ-homogeneity
(where λ is a partition), (k, l)-homogeneity where k < l, and the k-universal
transversal property.

The second part is a brief report on the synchronization project, the attempt
to answer the question: for which permutation groups G is it true that 〈a,G〉
contains a map of rank 1 for any non-permutation a? The obstruction to this
property turns out to be endomorphisms of very special graphs; but these lead
to hard geometric and combinatorial problems about permutation groups.
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A construction for the outer automorphism of S6

Padraig Ó Catháin
The University of Queensland
p.ocathain@gmail.com

In joint work with Neil Gillespie and Cheryl Praeger on the construction of
neighbour transitive codes from complex Hadamard matrices, we came across
what appears to be a new construction for the outer automorphism of the sym-
metric group S6.

In this talk I will describe the construction, given by two representations of
3.S6 which are intertwined by a complex Hadamard matrix.

A non-embedding result for R. Thompson’s group V
Nathan Corwin
University of Nebraska
s-ncorwin1@math.unl.edu

Thompson’s group V was first defined in 1965. It can be interpreted as
a particular subgroup of the automorphism group of the Cantor set. We use
some dynamical properties of the action of an element of V on the Cantor Set
of to show that Z o Z2 does not embed into Thompson’s group V . This result
adds to the limited number of structure theorems for V . Part of the interest
in a dynamical approach stems from the historical difficulty of purely algebraic
techniques to obtain structure results about V .

Finite groups acting on groups
Marian Deaconescu
Department of Mathematics, Kuwait University
mdeaconescu@yahoo.com

Coauthors: Gary L. Walls

Let G be a finite group and let A = Aut(G). We give a “combinatorial”
characterization of the situation when A is abelian.

We also show that, when G is nilpotent of class n and α ∈ A, the number
|G : CG(α)| is a product of the orders of n precisely defined abelian groups.
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The 6-transposition Coxeter groups G(m,n,p)

Sophie Decelle
Imperial College London
sophie.decelle@imperial.ac.uk

We give a complete classification of all groups having the following property
(6).

Property (6): A group G has property (6) if it satisfies the following two
conditions:
(i) G is generated by three involutions {a, b, c} two of which commute, say
ab = ba;
(ii) We let T be the union of the conjugacy classes of a, b, ab, and c. For any
two involutions t and s in T , the product ts has order at most 6. We say that
T is ‘6-transposition’.

In this talk I will give a complete classification of the groups having property
(6). I will then explain how the motivation for this classification originated in
Majorana Theory, which is an axiomatisation of some of the properties of the
Monster algebra, as introduced by A. A. Ivanov. To this end, Majorana Theory
and Majorana representations will be very briefly presented.

Recent advances in computing with infinite linear groups
Alla Detinko
National University of Ireland, Galway
alla.detinko@nuigalway.ie

Coauthors: Dane Flannery

In the talk we will discuss recent progress in computing with finitely gener-
ated linear groups over infinite fields. Main consideration will be given to linear
groups of finite (Prüfer) rank. For a finitely generated linear group G over a
number field we develop algorithms testing whether G is of finite rank, and if
so, we compute the torsion free rank of G. This yields in turn an algorithm to
decide whether a finitely generated subgroup of G is of finite index. Further
applications will also be presented in the talk.
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The probability of generating a monolithic group
Eloisa Detomi
Padova
detomi@math.unipd.it

Coauthors: A.Lucchini (Padova)

Let L be a finite group with a unique minimal normal subgroup, say N .
We will present some bounds on the conditional probability PL,N (d) that d
randomly chosen elements of L generate L given that they generated L modulo
N. In particular, if d ≥ d(G) then PL,N (d) ≥ 1/2. Several applications to general
questions on the generation of finite and profinite groups are described.

Constructing group extensions with special properties
Andreas Distler
Technische Universität Braunschweig
a.distler@tu-bs.de

Coauthors: Bettina Eick (Technische Universitt Braunschweig)

Let G be a finite group acting on a finite abelian group A. In this talk I
shall present effective methods to determine up to isomorphism all extensions
E of A by G such that A is the last non-trivial term of the lower central series
respectively the derived series of E.

Classification of embeddings of abelian extensions of Dn into En+1

Andrew Douglas
City University of New York
afdouglas@gmail.com

Coauthors: Delaram Kahrobaei, Joe Repka

An abelian extension of the special orthogonal Lie algebra Dn is a non-
semisimple Lie algebra Dn A V , where V is a finite-dimensional representation
of Dn, with the understanding that [V, V ] = 0. We determine all abelian ex-
tensions of Dn that may be embedded into the exceptional Lie algebra En+1,
n = 5, 6, and 7. We then classify these embeddings, up to inner automorphism.
As an application, we also consider the restrictions of irreducible representa-
tions of En+1 to Dn A V , and discuss which of these restrictions are or are not
indecomposable.
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A Model of Computer Memory
Ben Fairbairn
Birkbeck, University of London
b.fairbairn@bbk.ac.uk

Coauthors: Peter Cameron and Maximilien Gadouleau

Work of Burckel et al. over the past fifteen years or so, has attempted to
model computer memory in terms of a certain transformation semigroup of a
linear code. Restricting attention to permutations of these codes and to linear
transformations of these codes raises natural questions over what groups can be
obtained in this way.

The influence of p-regular class sizes on normal subgroups
Maŕıa José Felipe
Universidad Politécnica de Valencia
mfelipe@mat.upv.es

Coauthors: Antonio Beltrán Felip

Let p be a prime number. Let G be a finite group and N be a normal
subgroup of G. We present some recent results which put forward a strong
relation between the conjugacy class sizes in G of the p-regular elements of N
and the nilpotency of the p-complements of N .

On Elementary Free Groups and Some Consequences of the Solution
to the Tarski Problems
Benjamin Fine
Fairfield University
fine@fairfield.edu

Coauthors: A.Gaglione, G.Rosenberger and D. Spellman

From the positive solution to the Tarski problems by Kharlampovich and
Myasnikov and independently Sela it follows that every first order theorem in
a nonabelian free group is true in every elementary free group. An elementary
free group is a group that shares the first order theory of the class of nonabelian
free groups. The class of elementary free groups extends beyond the class of free
groups and in particular includes the orientable surface groups of genus g ≥ 2
and the nonorientable surface groups of genus g ≥ 4. A well-know theorem of
Magnus concerns the normal closures of elements in free groups. A version of this
theorem for surface group was proved directly by J. Howie and independently by
O. Bogopolski in a quite difficult manner. We show that Magnu’s theorem can
be given as a sequence of first order sentences and hence is true in an elementary
free group and in particular is surface groups of appropriate genus.
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This type of result opens up several different types of questions. The first
is which additional nontrivial free group results are true in surface groups but
difficult to obtain directly. Secondly what first order properties of nonabelian
free groups are true beyond the class of elementary free groups.

In this talk we survey a large collection of results on elementary free groups.
We show that such groups have cyclic centralizers, are stably hyperolic, satisfy
Turner’s theorem concerning test elements and are subgroup separable. Further
they have tame automorphism groups and constructibe faithful representations
in PSL(2,C).

In regard to this second question we consider groups satisfying certain quadratic
properties that we call Lyndon properties and show that the class of groups
satisfying these are closed under many amalgam constructions. Results of
Gaglione and Spellman and independently Remeslennikov tie together finitely
generated fully residually free groups, commuttaive transitivity and universally
free groups. We consider classes of groups that extend this theorem. Work
by Ciobanu, Fine and Rosenberger show that these types of classes of groups,
that we denote BX , are fairly extensive. Finally we introduce a class of groups
defined in terms of conjugacy pinched constructions that generalize both fully
residually free groups and groups acting freely on Zn-trees.

Algorithms for arithmetic groups with the congruence subgroup prop-
erty
Dane Flannery
National University of Ireland, Galway
dane.flannery@nuigalway.ie

Coauthors: Alla Detinko

We discuss practical algorithms to compute with arithmetic subgroups G of
SL(n,Q), n > 2, containing a principal congruence subgroup of known level
m. Various problems are solved: testing membership in G, determining the
subnormal structure of G, and the orbit problem for G. Our approach depends
on computing with subgroups of GL(n,Z/mZ).
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Growth in Baumslag-Solitar groups: asymptotics
Eric Freden
Southern Utah University
freden@suu.edu

Coauthors: Jared Adams

Using the specific example of BS(2, 4) we estimate the asymptotics of the
spherical growth series. The techniques utilize standard tools from number
theory and imply that the actual computation of growth series terms may be
an intractable problem.

Turner’s Theorem is not First Order
Anthony M. Gaglione
U.S. Naval Academy
agaglione@aol.com

Coauthors: Benjamin Fine, Dennis Spellman

A theorem of E.C. Turner states that in a finitely generated free group the
test elements are precisely the elements not contained in any proper retract.
Here we show that this theorem is not first order expressible.

Covering permutation groups
Martino Garonzi
University of Padova (Italy)
mgaronzi@gmail.com

Coauthors: Andrea Lucchini

In this talk I will present a recent result obtained in a joint work with A.
Lucchini. We proved that any noncyclic subgroup G of the symmetric group of
degree n is the union of at most (n+2)/2 conjugacy classes of proper subgroups
of G.
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Subgroup structure of branch groups
Alejandra Garrido
University of Oxford
garridoangul@maths.ox.ac.uk

Coauthors: John S. Wilson

Since their first appearance in the 1980’s, branch groups have received much
attention due to their unusual properties. Most notably, they serve to answer
long-standing group theoretic questions such as the Burnside, Day and Milnor
problems. We present results on the subgroup structure of branch groups, fo-
cusing on normal subgroups of subgroups of finite index. These will allow us to
answer questions concerning commensurability of finitely generated subgroups
of branch groups.

Tensor decomposition, Jordan canonical forms, and ClebschGordan
coefficients
Stephen Glasby
The University of Western Australia
glasbys@gmail.com

One motivation for our talk comes from representation theory: decompos-
ing a tensor product of irreducible (or indecomposable) representations as a
sum of smaller degree irreducible (or indecomposable) representations. Other
motivations come from quantum mechanics and Frobenius algebras.

Consider an r × r matrix Kr over a field F with 1s on the main diagonal
and first upper diagonal (positions (i, i) and (i, i+ 1)) and zeros elsewhere. The
tensor product Kr ⊗Ks is a unipotent matrix whose Jordan canonical form is
determined by some partition of rs. We will describe this partition when the
characteristic p of F is small (i.e. p < r + s− 1). The large characteristic case
(p ≥ r + s − 1) was solved recently by Iima and Iwamatsu. This talk will be
accessible to postgraduate students.

On quadratic and cubic action of a rank one group
Matthias Gruninger
UC Louvain
matthias.grueninger@uclouvain.be

A group G is called an rank one group with unipotent subgroups A and B if G
is generated by two nilpotent subgroups A and B such that for all a ∈ A∗ there
is an element b(a) ∈ B∗ such that Ba = Ab(a) and vice versa. A rank one group
G is said to act quadratically (resp. cubically) on a module V if [V,A,A] = 0 but
[V,G,G] 6= 0 (resp. [V,A,A,A] = 0 but [V,A,A] 6= 0 and [V,G,G,G] 6= 0). F.
Timmesfeld showed that if a rank one group G acts quadratically on a module V ,
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then there is a special quadratic Jordan division algebra such that G ∼= SL2(J).
Using Timmesfeld’s result, one can prove if G acts cubically on V , then some
additional conditions imply that V is a pseudoquadratic space of Witt index 1
and G is the isometry group of V .

Relation lifting and the relation gap problem
Jens Harlander
Boise State University
jensharlander@boisestate.edu

Let F/R be a presentation of a group G, and let R/[R,R] be the associated
relation module. The relation lifting problem asks the question: given gener-
ators r1[R,R], ..., rn[R,R] of the relation module R/[R,R], do there exist lifts
r1c1, ..., rncn ∈ R, where ci ∈ [R,R], that normally generate the relation group
R ? The relation lifting problem arose first in the work of Wall on finiteness
obstructions in 1965. Dunwoody showed in 1972 that relations can not always
be lifted. His construction relied on the existence of non-trivial units in the
group ring of Z5. Bestvina and Brady exhibited a presentation of a finitely
generated torsion-free group that is not finitely presented but admits a finitely
generated relation module. Thus, relation lifting fails in a very strong sense.
A difference between the minimal number of relators and the minimal number
of relation module generators is called the relation gap. Relation gaps in finite
presentations have not been found so far, although there is no lack of examples
where such a gap is expected to occur. In my talk I intend to survey aspects of
the relation lifting and relation gap problem and present some new results.

Permutation Statistics in Classical Weyl groups
Sarah Hart
Birkbeck College, University of London
s.hart@bbk.ac.uk

Coauthors: Peter Rowley, University of Manchester

There are several results counting involutions (or involutions with no fixed
points) with a given number of inversions in the symmetric group. The number
of inversions corresponds nicely to the idea of the length of elements, when we
view the symmetric group as a Coxeter group of type A, which of course raises
the question of what happens in types B and D. There has been some work
and several conjectures in this area.

In this short talk I will present joint work with Peter Rowley, which addresses
one of these conjectures.
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Schur indices in GAP
Allen Herman
University of Regina
aherman@math.uregina.ca

The GAP package wedderga has provided a function for computing the
Wedderburn decomposition of the group algebra of finite group over an abelian
number field since 2006. The cyclotomic algebras that appear in its output may
not represent division algebras, however, and so in many cases one does not
obtain the complete Wedderburn decomposition of the group algebra that one
might desire.

I have recently developed new local and global Schur index functions that
identify the division algebra part of a cyclotomic algebra in GAP. These have
now enabled wedderga to include a complete Wedderburn decomposition func-
tion for group algebras of finite groups over abelian number fields. In this talk I
will give an overview of GAP’s new Schur index and Wedderburn decomposition
functions.

Some inverse problems in Baumslag-Solitar groups
Marcel Herzog
Tel-Aviv University
herzogm@post.tau.ac.il

Coauthors: G.A.Freiman, P.Longobardi, M.Maj and Y.V.Stanchescu

We investigate inverse problems in Baumslag-Solitar groups

BS(1, n) = 〈a, b | ab = ban〉,

where n denotes a positive integer. Using known and new results in addi-
tive number theory we showed, for example, that if S is a finite subset of the
coset b〈a〉 in BS(1, 2), then |S2| = |{rs | r, s ∈ S}| ≥ 3|S| − 2. Moreover,
if |S| ≥ 3 and |S2| < 4|S| − 4, then S is a subset of a geometric progression
{bau, bau+d, bau+2d, . . . , bau+(2|S|−2)d} of length 2|S| − 3, where u and d denote
certain integers depending upon S.
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Subgroup structure in the group of infinite triangular matrices
Waldemar Holubowski
Institute of Mathematics, Silesian University of Technology, Poland
waldemar.holubowski@polsl.pl

Coauthors: Agnieszka Bier

We make a review of the results known on subgroups in the group T (∞, R)
of infinitely dimensional triangular matrices over the ring R. During the last
few years, a significant progress has been done towards the characterization of
subgroups in T (∞, R), including the subgroup UT (∞, R) of all unitriangular
infinite matrices over R.

In the talk we discuss the following four topics that were developed within
the last decade: free subgroups in UT (∞, R), the lower and derived series in
T (∞, R) and UT (∞, R), verbal subgroups of UT (∞, R) and their width, and
subgroups of Vershik - Kerov group.

Representations Arising from an Action on D-neighborhoods of Cay-
ley Graphs
Justin Hughes
Colorado State University
hughes@math.colostate.edu

Given G a finite group and a generating set, one can construct the Cayley
Graph. With a set D comprised of nonnegative integers one can construct a D-
neighborhood complex from the Cayley Graph. This neighborhood complex is
a simplicial complex and thus it is natural to form an associated chain complex.
The group G acts naturally on the chain complex and this leads to an action
on the homology of the chain complex. These group actions give rise to several
representations of G. This work uses tools from group theory, representation
theory and homological algebra to further our understanding of the interplay
between generated groups (i.e. a group together with a set of generators),
corresponding representations on their associated D-neighborhood complexes,
and the homology of the D-neighborhood complexes.
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Practical Algorithms for Matrix Groups
Alexander Hulpke
Colorado State University
hulpke@math.colostate.edu

Recent progress on Matrix Group Recognition has made it possible to start
designing and implementing higher level algorithms for matrix groups. I will
show how to adapt algorithms originally designed for permutation groups to the
case of matrix groups, which existing methods immediately transfer and whiich
new problems arise. I will also report on concrete implementations of algorithms
for element centralizer, element conjugacy and subgroup normalizer.

Weak Cayley tables and generalized centralizer rings of finite groups
Stephen Humphries
Brigham Young University
steve@math.byu.edu

Coauthors: Emma L. Rode

For a finite group G we study certain rings S
(k)
G called k-S-rings, one for

each k ≥ 1, where S
(1)
G is the centralizer ring Z(CG) of G. These rings have the

property that S
(k+1)
G determines S

(k)
G for all k ≥ 1. We study the relationship of

S
(2)
G with the weak Cayley table of G. We show that S

(2)
G and the weak Cayley

table together determine the sizes of the derived factors of G (noting that a

result of Mattarei shows that S
(1)
G = Z(CG) does not). We also show that

S
(4)
G determines G for any group G with finite conjugacy classes, thus giving an

answer to a question of Brauer. We give a criteria for two groups to have the
same 2-S-ring and a result guaranteeing that two groups have the same weak
Cayley table. Using these results we find a pair of groups of order 512 that have
the same weak Cayley table, are a Brauer pair, and have the same 2-S-ring.

Neighbour-Transitive Codes in Johnson Graphs
Mark Ioppolo
University of Western Australia
ioppom01@student.uwa.edu.au

A frequently made assumption in coding theory is that the probability of an
error occurring does not depend on the position of the error in the codeword,
or on the value of the error. The group theoretic analogue of this condition is
known as neighbour-transitivity.

A code is called neighbour-transitive if its automorphism group acts tran-
sitively on codewords and code-neighbours. Here we outline recent attempts
to classify neighbour-transitive codes in Johnson graphs, with emphasis on the
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case where the code automorphism group is contained in a binary sympletic
group acting 2-transitively on a set of quadratic forms.

Commuting probability and commutator relations
Urban Jezernik
Institute of Mathematics, Physics, and Mechanics, Slovenia
urban.jezernik@gmail.com

Coauthors: Primoz Moravec (University of Ljubljana)

The commuting probability of a finite group G is the probability that a
randomly chosen pair of elements of G commute. We show that when this
number is greater than 1/4, all the relations between commutators in G are
consequences of some universal ones.

Group matrices old and new
Kenneth W. Johnson
Penn State University Abington College
kwj1@psu.edu

The group matrix XG of a finite group G arises from an ordering {gi}ni=1

of the elements of G and the assignment of a set of variables {xgi}ni=1. It is an
encoding of the group operation under one-sided division, XG = {x−1

gh }. The
original problem addressed by Frobenius in the foundational papers of group
representation theory was that of the factorisation of ΘG = det(XG). XG

has appeared in applications in several contexts (random walks, control theory,
wavelets...). Given any representation ρ of G there is associated a group matrix
Xρ
G =

∑
g∈G ρ(g). Often in practice it is important to decompose XG into a

block diagonal matrix where the blocks are the Xρ
G for irreducible ρ. I will talk

about some old and new results.
(1) Usually the diagonalisation of XG is performed by a similarity transfor-

mation over C. However in 1907 Dickson showed for that any p-group P there is
an ordering of P and a matrix T such that TPT−1is a lower triangular matrix
with diagonal entries all equal to

∑
g∈P xg. Moreover, one such T is a “Pascal

triangle matrix”, i.e an upper triangular matrix with Pascal’s triangle written
sideways for the entries. Questions arise as to how the information in TPT−1

can be used in applications.
(2) The Grothendieck ring of a finite group is the ring of virtual representa-

tions, but it appears hard to express this in terms of group matrices. However,
if ideas coming from superalgebras (first investigated by physicists) are used,
such a representation can be obtained. It may be possible that “super group
matrices” have a meaning in physics.
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Groups, Formal Language Theory, and Decidability
Sam Jones
Department of Computer Science, University of Leicester
sj175@le.ac.uk

Coauthors: Rick Thomas

In this talk I will give a brief overview of some of the interactions between
group theory and formal language theory, in particular, I will focus on the word
problem for groups and the study of the word problem as a formal language. I
will explain how groups can be classified in terms of the type of automata which
accept their word problem. I will then talk about some decidability questions
and results in formal language theory on which I have been working which were
motivated by the study of the word problem for groups as a formal language. I
will not assume any prior knowledge of automata/language theory.

Public Key Exchange Using Semidirect Product of Groups
Delaram Kahrobaei
City University of New York, CUNY Graduate Center, NYCCT, Center for
Logic Algebra Computation
Dkahrobaei@gc.cuny.edu

Coauthors: Maggie Habeeb, Charalambous Koupparis, Vladimir Shpilrain

In this talk I describe a brand new key exchange protocol based on a semidi-
rect product of (semi)groups (more specifically, on extension of a (semi)group
by automorphisms), and then focus on practical instances of this general idea.
Our protocol can be based on any group, in particular on any non-commutative
group. One of its special cases is the standard Diffie-Hellman protocol, which
is based on a cyclic group. However, when our protocol is used with a non-
commutative (semi)group, it acquires several useful features that make it com-
pare favorably to the Diffie-Hellman protocol. Here we also suggest a particular
non-commutative semigroup (of matrices) as the platform and show that secu-
rity of the relevant protocol is based on a quite different assumption compared
to that of the standard Diffie-Hellman protocol.
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Variations on a Theme of I.D. Macdonald
Luise-Charlotte Kappe
Binghamton University
menger@math.binghamton.edu

Coauthors: Gabriela Mendoza, Riverside City College

In a 1963 paper I.D. Macdonald gave an example of a group in which the
cyclic commutator subgroup is not generated by a commutator and he gives
sufficient conditions on the group G such that its cyclic commutator subgroup
is generated by a commutator.

The question arises, what is the situation for other words in case the asso-
ciated word subgroup is cyclic, in particular the power word xn, n a positive
integer. For n a positive integer, we established sufficient conditions such that
Gn = 〈gn | g ∈ G〉 is generated by an n-th power in case Gn is cyclic and gave
examples of groups G, where Gn is cyclic but not generated by the n-th power
of an element.

Finiteness conjectures in modular representation theory
Radha Kessar
City University

The representation theory of a finite group over a field of positive character-
istic p is strongly influenced by the p-local structure of the group. The finiteness
conjectures of Brauer and Donovan predict that the structure of a p-block of a
finite group is determined by the order of its defect groups up to finitely many
possibilities. These conjectures are still open, but advances in the understand-
ing of the modular representation theory of finite groups of Lie type over the
past two decades have led to a spectacular amount of evidence for them. In my
talk, I will give an introduction to the conjectures and report on their current
status.

On finite groups with small prime spectrum
Igor V. Khramtsov
N.N. Krasovskii Institute of Mathmatics and Mechanics of the Ural, 16, S.Kovalevskaja
street, 620990, Ekaterinburg, Russia
ihramtsov@gmail.com

Coauthors: Anatoly S. Kondratiev

We survey the recent author’s results on finite groups with small prime spec-
trum. Prime spectrum of a finite group is the set of prime divisors of its order.
We describe the chief factors of 3-primary groups and the chief factors of com-
mutator subgroups of 4-primary groups whose prime graphs are disconnected.
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As a corollary, 3-primary finite almost simple groups and 4-primary finite simple
groups recognizable by prime graph are determined. The complete irreducibility
of GF (2)A7-modules in which an element of order 5 acts fixed point freely is
proved. Finite groups with the same prime graph as the group Aut(J2) or A10

are described.

Generators and Relations for a Discrete Subgroup of SL2(C)× SL2(C)
Ann Kiefer
Vrije Universiteit Brussel
akiefer@vub.ac.be

Coauthors: Ángel del Ŕıo and Eric Jespers

The main goal is the investigation on the unit group of an order O in a
rational group ring QG of a finite group G. In particular we are interested in the
unit group of ZG. For many finite groups G a specific finite set B of generators of
a subgroup of finite index in U(ZG) has been given. The only groups G excluded
in this result are those for which the Wedderburn decomposition of the rational
group algebra QG has a simple component that is either a non-commutative
division algebra different from a totally definite quaternion algebra or a 2 × 2
matrix ring M2(D), where D is either Q, a quadratic imaginary extension of Q
or a totally definite rational division algebra H(a, b,Q).

In some of these cases, up to commensurability, the unit group acts discontin-
uously on a direct poduct of hyperbolic 2- or 3-spaces. The aim is to generalize
the theorem of Poincaré on fundamental domains and group presentations to
these cases. For the moment we have done this for the Hilbert Modular Group,
which acts on H2 ×H2.

Recent advances on prime graphs of integral group rings.
Alexander Konovalov
University of St Andrews
alexk@mcs.st-andrews.ac.uk

Coauthors: V. Bovdi, W. Kimmerle, S. Linton et al.

I will report on recent progress in the determination of prime graphs of
integral group rings of sporadic simple groups and their automorphism groups,
and of groups of order divisible by at most three primes. I will also discuss the
reduction of the prime graph question to almost simple groups.
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On some numerical invariants of finite grous
Jan Krempa
University of Warsaw, Warszawa, Poland
jkrempa@mimuw.edu.pl

Coauthors: Agnieszka Stocka, University of Bialystok, Bialystok, Poland

All groups considered here are finite. By a numerical invariant of a group G
we mean a nonnegative integer, say I(G), which is preserved by isomorphisms.
We say, that our invariant I is monotone (on G) if I is defined for all subgroups
of G and I(H) is less or equal to I(K), whenever H < K < G. In this talk
I’m going to survey several numerical invariants of finite groups related either
to their orders or to generating sets or to lattices of subgroups. Some relations
among these invariants will be exhibited. Special attention will be paid to
monotonicity of them. In particular, groups with the basis property will be
discussed.

Solvability criteria for finite loops and groups
Emma Leppälä
University of Oulu, Finland
emma.leppala@oulu.fi

A groupoid Q with a neutral element is called a loop if the equations
ax = ya = b have unique solutions x and y for each a and b in Q. If we
add associativity, the loop is in fact a group. We define two permutation groups
associated to the loop, the multiplication group and inner mapping group of the
loop. Many properties of loops can be investigated through these groups. We
are particularly interested in the solvability of loops. We present the connection
between the multiplication groups of loops and connected transversals, formed
in 1990. In 1996 Vesanen showed that if the multiplication group of a finite loop
is solvable, then the loop is solvable, too. This makes it possible to construct
solvability criteria for finite loops in terms of their inner mapping groups, using
only group theory.
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Sylow multiplicities in finite groups
Dan Levy
The Academic College of Tel-Aviv-Yaffo
danlevy@trendline.co.il

Let G be a finite group and let p1, . . . , pm be the distinct prime divisors of
its order. Let P = P1, . . . , Pm be a sequence of Sylow pi-subgroups of G. The
Sylow multiplicity mP (g), of an element g of G in the sequence P , is the number
of distinct factorizations g = g1, . . . , gm for which gi belongs to Pi. I’ll review
several results and open questions about relations between conditions which
are formulated in terms of the numbers mP (g), and properties of the solvable
radical of G, the solvable residual of G, and ordinary characters of G. Part of
the talk is based on joint work with Gil Kaplan.

Images of word maps in almost simple groups and quasisimple groups
Matthew Levy
Imperial College London
mjtl05@ic.ac.uk

Let w be a word in the free group of rank k. For a group G we can define the
word map that sends a k-tuple of elements of G to its ‘w-value’ by substituting
variables and performing all necessary group operations. Let w(G) denote the
image of this word map. Clearly, the image of a word map must contain the
identity and must be closed under automorphisms of G. Kassabov and Nikolov
[1] have constructed words to show that for any simple alternating group there
exists a word whose image is precisely the identity and all 3-cycles. More gen-
erally, Lubotzky [2] has shown that for any simple group G any automorphism
invariant subset which contains the identity is the image of some word map. We
will discuss these and other results as well as recent extensions to almost simple
groups and quasisimple groups.
[1] M. Kassabov and N. Nikolov. Words with few values in finite simple groups.
Q. J. Math., June 2012
[2] Alexander Lubotzky. Images of word maps in finite simple groups. arXiv ,
(1211.6575v1).
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Width questions for simple groups
Martin Liebeck
Imperial College London
m.liebeck@imperial.ac.uk

Let G be a finite group generated by a collection S of subsets of G. Define
width(G,S) to be the minimal integer n such that G is equal to the union of a
product of n subsets in S, together with all subproducts. For example, when S
consists of a single subset, the width is just the diameter of the Cayley graph of
G with respect to this subset. I shall discuss a variety of problems concerning
the width of simple groups, mainly in the following cases:

1. the case where S consists of a single subset;

2. the case where S is closed under conjugation.

There are many examples of special interest. For instance, if S = {[x, y] : x, y ∈
G}, the set of commutators, the Ore Conjecture asserts that the width is 1 for all
finite non-abelian simple groups. The Thompson Conjecture states that there is
a conjugacy class C with respect to which the width is 2. There are many recent
results and problems concerning the ”word width” of simple groups – namely,
the width in the case where S consists of all values in G of a fixed word map.
There are also combinatorial interpretations of some width problems, such as
the estimation of diameters of orbital graphs.

Rational subsets in groups
Markus Lohrey
University of Leipzig
lohrey@informatik.uni-leipzig.de

A subset of a group G is called rational if it is a homomorphic image of a
regular set of words. The rational subset membership problem for a finitely gen-
erated group G asks whether a given group element belongs to a given rational
subset of G. This problem generalizes the classical subgroup membership prob-
lem (generalized word problem). Only very few classes of groups with decidable
rational subset membership problems are known. Examples are free groups, f.g.
abelian groups and certain graph groups. In the talk I will give an overview
on decidability and undecidability results for the rational subset membership
problem. In particular, I will consider wreath products. If time permits, will
sketch proofs for the following two results:

1. The rational subset membership problem is decidable for every wreath
product H o V , where H is a finite group and V is virtually free (this
includes e.g. the famous lamplighter group).
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2. The rational subset membership problem is undecidable for the wreath
product Z o Z. Actually, undecidability already holds for a fixed finitely
generated submonoid of Z o Z. This implies that Thompson’s group F
contains a finitely generated submonoid with an undecidable membership
problem.

On Groups with Few Isomorphism Classes of Derived Subgroups
Patrizia Longobardi
Dipartimento di Matematica - Università di Salerno
plongobardi@unisa.it

Coauthors: M. Maj, D. J. S. Robinson

Let G be a group. By a derived subgroup in G is meant the commutator
subgroup H ′ of a subgroup H of G. We investigate groups which have at
most n isomorphism classes of derived subgroups, for a positive integer n (Dn-
groups). We report some general results on some classes of Dn-groups. Then
we concentrate on D2 and D3-groups.

Near supplements and complements in solvable groups of finite rank.
Karl Lorensen
Pennsylvania State University, Altoona College
kql3@psu.edu

Coauthors: Peter Kropholler

Assume that G is a solvable group of finite abelian section rank. Let K be
a normal subgroup of G such that G/K is π-minimax for some set of primes π.
We use cohomology to prove that, if G/K is virtually torsion-free, then G has a
π-minimax subgroup X such that [G : KX] is finite. In addition, we determine
conditions that guarantee that X may be chosen so that K ∩X = 1.
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Large element orders and the characteristic of finite simple symplectic
and orthogonal groups.
Daniel Lytkin
Novosibirsk State University
dan.lytkin@gmail.com

Let G be a finite simple group of Lie type over a finite field, whose charac-
teristic we denote by ch(G). Suppose that G is defined as a subgroup of GLn(q)
generated by the set of matrices X. One of the problems of computational group
theory is to find ch(G) by X in polynomial time. The Monte-Carlo algorithm
[1] for solving this problem is based on the following property of simple groups
of Lie type: if G and H are simple groups of Lie type over fields of odd char-
acteristic such that the sets of element orders of G and H have the same three
largest elements, then ch(G) = ch(H) [1, Theorem 1.2]. The groups over fields
of characteristic 2 were excluded due to the complexity of calculating maximal
element orders of symplectic and orthogonal groups over fields of characteris-
tic 2. We prove that this property holds for all symplectic and some orthogonal
groups. We also provide explicit formulae for the two maximal element orders
of symplectic groups over fields of characteristic 2.

Bibliography [1] Kantor W.M., Seress A. Large element orders and the
characteristic of Lie-type simple groups. J. Algebra. 2009. V. 322, no. 3.
Pp. 802–833.

On groups with given spectrum
Daria Lytkina
Siberian State University of Telecommunications and Information Sciences
daria.lytkin@gmail.com

Coauthors: E. Jabara (Università Ca’ Foscari) A. Mamontov (Sobolev Institute
of Mathematics)

Denote by ω(G) the spectrum of a group G, i. e. the set of its element
orders. If the spectrum of G is finite, let µ(G) be the set of maximal with
respect to division elements of ω(G). We prove that periodic groups with µ(G) =
{3, 5, 8}, µ(G) = {4, 9} and µ(G) = {8, 9} are all locally finite, and give explicit
description of the structure of such groups.
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Four classes of verbal subgroups
Olga Macedonska
Institute of Mathematics, Silesian University of Technology, Poland
Olga.Macedonska@polsl.pl

We consider four classes of verbal subgroups in a free group F of rank 2,{
VN−verbal

}
⊆
{
P−verbal

}
⊆
{
R−verbal

}
⊆
{
M−verbal

}
. The subgroups

in each class define specific properties of corresponding varieties. We show that
each of these classes forms a sublattice in the lattice of all subgroups in F . Two
problems are open.

On the capability of p-groups of class two and prime exponent
Arturo Magidin
University of Louisiana at Lafayette
magidin@member.ams.org

A group G is capable if it is the central quotient of some group K, G ∼=
K/Z(K). I will discuss the problem of determining which p-groups of class two
and prime exponent are capable. The situation for this class is interesting in that
there are known necessary and known sufficient conditions; in general, sufficient
conditions for capability are difficult to come by. A full characterization is still
unknown, but seems to be within reach of current methods. I will cover a recent
result that guarantees capability of G in terms only of the sizes of [G,G] and
G/Z(G), as well as some related results and conjectures.

Finite groups with a metacyclic Frobenius group of automorphisms
Natalia Makarenko
Universit de Haute Alsace and Sobolev Institute of Mathematics
natalia makarenko@yahoo.fr

Coauthors: E.I.Khukhro (Sobolev Institute of Mathematics)

Suppose that a finite group G admits a Frobenius group of automorphisms
FH with cyclic kernel F and complement H such that the fixed point subgroup
CG(H) of the complement is nilpotent of class c. If CG(F ) = 1, then by the
Khukhro–Makarenko–Shumyatsky theorem G is nilpotent of (c, |H|)-bounded
class. We will discuss some resent generalizations of this result to the case of
nontrivial CG(F ). In particular, we proved that if |FH| and |G| are coprime,
then G has a nilpotent characteristic subgroup of index bounded in terms of
c, |CG(F )|, and |FH| whose nilpotency class is bounded in terms of c and |H|
only. A similar result is also obtained for the ‘modular case, where G and F are
finite p-groups.
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On the influence of subgroups on structure of finite groups
Izabela Agata Malinowska
Institute of Mathematics, University of Bia lystok, Poland
izabelam@math.uwb.edu.pl

A number of authors studied the structure of a finite group G under the
assumption that some of its subgroups are well located in G.

Let G be a finite group. Recall that subgroups A and B of G permute if
AB = BA. A subgroup H is said to be an s-permutable subgroup of G if H
permutes with every Sylow subgroup of G.

Yakov Berkovich investigated the following concept: a subgroup H of a group
G is called an NR-subgroup (Normal Restriction) if, whenever K is normal in
H, KG ∩H = K, where KG is the normal closure of K in G.

In this talk we characterize the class of finite solvable groups in which every
subnormal subgroup is normal in terms of NR-subgroups. We also give similar
characterizations of the classes of finite solvable groups in which every subnormal
subgroup is permutable or s-permutable.

Groups of exponent 12 without elements of order 12
Andrey Mamontov
Sobolev Institute of Mathematics, Novosibirsk
andreysmamontov@gmail.com

The spectrum of a periodic group is the set of its element orders. We discuss
some relations between spectrum and local finiteness, and prove that groups of
period 12 without elements of order 12 are locally finite.

Zassenhaus Conjecture for cyclic-by-abelian groups
Leo Margolis
University of Stuttgart
leo.margolis@mathematik.uni-stuttgart.de

Coauthors: Mauricio Caicedo, Angel del Rio (University of Murcia)

Let G be a finite group, ZG the integral group ring and U(ZG) the group
of units of ZG. The most famous open question regarding torsion elements of
U(ZG) is the Zassenhaus Conjecture: Let u be a torsion unit in U(ZG). Then
there exists a unit x in the rational group algebra QG such that x−1ux = g or
x−1ux = −g for some element g in G. We present a proof of this conjecture for
cyclic-by-abelian groups. This covers almost all known results on the Zassenhaus
Conjecture for solvable groups.

27



Algebraic groups and completely reducibility
Ben Martin
University of Auckland
Ben.Martin@auckland.ac.nz

Coauthors: Michael Bate, Sebastian Herpel, Gerhard Roehrle, Rudolf Tange,
Tomohiro Uchiyama

Let G be a reductive algebraic group over a field k of positive character-
istic. The notion of a completely reducible subgroup of G generalises the no-
tion of a completely reducible representation (which is the special case when
G = GLn(k)). I will describe a geometric approach to the theory of complete
reducibility, based on ideas of R.W. Richardson, and I will discuss some recent
work involving non-algebraically closed fields.

On the normal structure of a finite group with restrictions on maximal
subgroups
Natalia V. Maslova
16, S. Kovalevskaya St., Ekaterinburg, Russia
butterson@mail.ru

Coauthors: Danila Revin

In this work we discuss some results about finite groups with restrictions on
maximal subgroups which were obtained by N. V. Maslova and D. O. Revin.

We use the term “group” while meaning “finite group.”
A subgroup H in a group G is called a Hall subgroup if integers |H| and

|G : H| are coprime. We say that G is a group with Hall maximal subgroups if
each maximal subgroup in G is a Hall subgroup.

We proved, a group G with Hall maximal subgroups contains at most one
non-abelian composition factor, the solvable radical S(G) possesses a Sylow nor-
mal chain. Furthermore, G acts irreducibly on factors of this chain and factor-
group G/S(G) is either trivial or isomorphic to one of the following groups:
PSL2(7), PSL2(11) or PSL5(2). In particular all non-abelian composition
factors of finite groups with Hall maximal subgroups were described, thus the
Problem 17.92 from “Kourovka notebook” [2] is solved.

A group G is a group with complemented maximal subgroups if for every
maximal subgroup M of G there exists a subgroup H such that MH = G and
M∩H = 1. Using the description of finite groups with Hall maximal subgroups,
we proved that in finite groups with Hall all maximal subgroups all maximal
subgroups are complemented, thus the conjecture from [1] was proved.

Moreover, it was proved that every finite group with Hall maximal subgroups
can be generated by a pair of conjugated elements, thus is was obtained a
partial confirmation of P. Shum’jatski’s conjecture (see “Kourovka notebook”
[2], Problem 17.125).

Let π be a set of primes. Given a group G, denote by π(|G|) the set of its
prime divisors of |G|. A value π(G) is the prime spectrum of a group G. A finite
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group G is prime spectrum minimal if π(H) 6= π(G) for every proper subgroup
H of G. We have researched some non-abelian composition factors of a prime
spectrum minimal group.

Bibliography: 1. T. V. Tikhonenko, V. N. Tyutyanov, Finite groups with
maximal Hall subgroups, Izv. F. Skorina Gomel Univ., 50:5 (2008), 198-206 (In
Russian).

2. Kourovka Notebook, Unsolved Problems of Group Theory. 17 ed. [in
Russian], Novosibirsk Univ., Novosibirsk, 2010.

Embeddings into Thompson’s group V and co-CF groups
Francesco Matucci
Université Paris-Sud 11
francesco.matucci@math.u-psud.fr

Coauthors: Collin Bleak

Co-context-free groups provide a natural generalization of context-free groups
(which are precisely virtually free groups by work of Muller and Schupp). We
give a brief overview of Thompson’s group V and co-CF groups and produce
new examples of co-CF groups as subgroups of V. Our results and a conjecture
by Lehnert would then make V another candidate for a universal co-CF group.

Finite 3-groups as viewed from class field theory
Daniel C. Mayer
Austrian Science Fund (FWF)
algebraic.number.theory@algebra.at

Coauthors: M. F. Newman, Australian National University, Canberra, Aus-
tralian Capital Territory

Theorems of Artin and Shafarevich can be used to translate questions about
class field towers into questions about groups. In particular questions about
3-class field towers translate into questions about finite 3-groups. In this talk
some of these questions will be discussed using p-group generation starting from
the elementary abelian group with order 9 and sieving the output using conse-
quences of the theorems of Artin and Shafarevich. From this it can be shown
that there are complex quadratic fields whose 3-class field tower has exactly
three stages.
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Sidki’s Conjecture; showing finiteness of group presentations using
amalgams
Justin McInroy
University of Leicester
jfm12@le.ac.uk

Coauthors: Sergey Shpectorov, University of Birmingham

The following:

〈a1, . . . , am|a3
i = 1, ∀i, (aiaj)2 = 1, i 6= j〉

is a well-known presentation for the alternating group Am+2. In 1982, Sidki
asked the question: what if we allow the generators ai to have order n rather
than just order 3? He conjectured that the group y(m,n) given by this pre-
sentation was finite. Some results in small cases are known and the conjecture
appears to hold (with an interesting pattern of groups occurring), but the ques-
tion is still open.

We tackle Sidki’s problem in a new way, using geometries and group amal-
gams. This method should not only give an answer to the question of finiteness,
but also identify y(m,n). We will describe the background behind the problem,
give a brief crash course in geometries and amalgams and show how they apply
to this problem.

Centralizer-like subgroups associated with words in two variables
Maurizio Meriano
Università di Salerno
mmeriano@unisa.it

Coauthors: Luise-Charlotte Kappe

Let w be a word in two variables and let G be a group. In [4], for ev-
ery element g in G the subsets Ww

L (g) = {a ∈ G | w(g, a) = 1} and Ww
R (g) =

{a ∈ G | w(a, g) = 1} have been considered.
In this talk, based on [2], we examine some sufficient conditions on the group

G ensuring that the sets Ww
L (g) and Ww

R (g) are subgroups of G for all g in G.
In particular, we investigate whether the sets Ww

L (g) and Ww
R (g) are subgroups

for words of the form w(x, y) = Cn[y, x], where Cn is a left-normed commutator
of weight n ≥ 3 with entries from the set consisting of x, y and their inverses.

N.D. Gupta [1] considered a number of group laws of the form Cn = [x, y],
observing that any finite or solvable group satisfying such a law is abelian. In
[3] it has been shown that for n = 3, all laws Cn = [x, y] are equivalent to the
commutative law, and in [5] the same was established for n = 4.

We more specifically investigate the words of the form w(x, y) = C3[y, x].
References
[1] N.D. Gupta, Some group-laws equivalent to the commutative law. Arch.

Math., 17 (1966), 97-102.
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[2] L.-C. Kappe, M. Meriano, Centralizer-like subgroups associated with some
commutator words in two variables. In preparation.

[3] L.-C. Kappe, M.J. Tomkinson, Some conditions implying that a group is
abelian. Algebra Colloquium, 3 (1996), 199-212.

[4] M. Meriano, C. Nicotera, On certain weak Engel-type conditions in groups,
to appear in Communications in Algebra.
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Simplicity result for groups acting on trees
Rögnvaldur G. Möller
University of Iceland
roggi@hi.is

Coauthors: Jan Vonk, University of Oxford

In 1970 Tits studied “property P” for group actions on trees. Property P is
an “independence property” that can be interpreted (roughly) as saying that the
group acts on one part of the tree independently of how it acts on other parts.
Tits showed that if G is a group acting on a tree with property P (and satisfies
some non-triviality conditions) then the subgroup generated by the stabilizers
of edges is simple. In this talk I want to describe a different independence
property and a related simplicity result. This can then be used in the study of
automorphism groups of locally finite graphs with more than one end.

The essential rank of the alternating group.
Antoine Nectoux
The University of Auckland
antoine.nec@gmail.com

Conjugation families for finite groups were introduced by Alperin in 1967,
with his Fusion Theorem. This theorem has been refined by Goldschmidt in
1970 and is now applied to fusion systems, which are used to study the p-local
structure of a group and modular representation theory. In this talk I will
introduce the essential rank of a fusion system for a group, which has been
studied for classical groups and the symmetric group, and show how to extend
these results to the alternating group.
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On the homology of hyperbolic groups
Matthias Neumann-Brosig
Institut Computational Mathematics, TU Braunschweig, 38106 Braunschweig,
Germany
m.neumann-brosig@tu-braunschweig.de

Coauthors: Gerhard Rosenberger

The Rips complex is a locally finite simplicial complex obtained from the
Cayley graph of a group. We show how this can be used to construct free
resolutions of word-hyperbolic groups that are finitely generated in each dimen-
sion. Based on these resolutions we introduce an algorithm to determine the
Euler characteristic of a torsion-free word-hyperbolic group and we prove an
upper bound for the virtual chomological dimension of a virtually torsion-free
word-hyperbolic group.

On the Covering Number of Small Symmetric Groups
Daniela Nikolova-Popova
Florida Atlantic University, USA
dpopova@fau.edu

Coauthors: Charlotte-Luise Kappe, Binghamton University, USA

Every group G with a finite non-cyclic homomorphic image is a union of
finitely many proper subgroups. The minimal number of subgroups needed to
cover G is called the covering number of G, denoted by σ(G). Tomkinson showed
that for a soluble group G, σ(G) = pk + 1, where p is a prime, and he suggested
the investigation of the covering number for families of finite non-soluble groups,
in particular - simple ones. For the symmetric groups Sn Maroti showed that
σ(Sn) = 2n−1 if n is odd unless n = 9, and σ(Sn) ≤ 2n−2 if n is even. We have
determined the exact covering number of Sn for some small values of n, and
found ranges for others. In particular, we show that σ(S8) = 64, σ(S10) = 221,
and 243 ≤ σ(S9) ≤ 256.

Beauville Groups
Emilio Pierro
Birkbeck, University of London
e.pierro@mail.bbk.ac.uk

Coauthors: Ben Fairbairn

Beauville groups arise from a family of surfaces of interest to geometers
known as Beauville surfaces. Their definition can be encoded entirely in group-
theoretic language and many of the geometric and topological properties of the
Beauville surface from which they arise can be recovered from the group itself.
Of interest to group theorists is which groups can occur as Beauville groups. We
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will present work of the speaker on both examples and non-examples of families
of Beauville groups.

On the number of conjugacy classes in equa-pattern groups
Péter P. Pálfy
MTA Alfréd Rényi Institute of Mathematics
ppp@renyi.hu

A famous open problem due to Graham Higman asks if the number of con-
jugacy classes in the group of n × n unipotent upper triangular matrices over
the q-element field can be expressed as a polynomial function of q for every
fixed n. In a joint paper with Zoltán Halasi we considered the generalization
of the problem for pattern groups and proved that for some pattern groups of
nilpotency class two the number of conjugacy classes is not a polynomial func-
tion of q. Now we make a further generalization. By an equa-pattern group
we mean a subgroup of the group of upper unitriangular matrices where some
entries are set to be equal to each other, and some other entries are zero. We
show that Marcus du Sautoy’s notorious group of order p9 can be represented
as an equa-pattern group of 13 × 13 matrices, and then we calculate the num-
ber of conjugacy classes in this group. (That was obtained independently by
Michael Vaughan-Lee). This number is not a polynomial function of p, in fact,
the formula involves the number of points on the elliptic curve y2 = x3−x over
the p-element field.

Geometric actions of classical algebraic groups
Raffaele Rainone
University of Southampton
R.Rainone@soton.ac.uk

Let G be a classical algebraic group over an algebraically closed field of
characteristic p ≥ 0, with natural module V . Various subgroups H of G can
be defined naturally in terms of the geometry of V — H may be the stabiliser
of a subspace of V , or a direct sum decomposition of V , or a non-degenerate
form on V , for example. Let H be such a subgroup and let Ω = G/H be the
corresponding coset variety. We will discuss new results on the dimension of
fixed point spaces CΩ(x) for elements x in G of prime order.
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Profinite properties of discrete groups
Alan Reid
University of Texas

The central theme of these lectures will be: when are finitely generated
residually finite groups determined by their finite quotients. As a specific case
of this, a famous open problem from the 1970’s asks whether a finitely generated
free group is determined by its finite quotients.

The lectures will discuss results and ideas in proofs of some progress on
these types of questions as well as related results and questions connected to
parafree groups. The methods of proof will require technology from the theory
of profinite groups as well as computing L2-betti numbers.

Recent Results on Generalized Baumslag-Solitar Groups
Derek J S. Robinson
University of Illinois at Urbana-Champaign
dsrobins@illinois.edu

Coauthors: A.L. Delgado and M. Timm

A generalized Baumslag-Solitar group is the fundamental group of a graph
of groups with infinite cyclic vertex groups and edge groups. There has been
considerable activity recently in this area. We will discuss recent work on GBS-
groups, including (co)homological properties, the abelianisation, the Schur mul-
tiplier, tree dependent and skew tree dependent graphs, how to compute the
centre and maximal cyclic normal subgroup, and the relation between GBS-
groups and 3-manifold groups.

Some designs and binary codes preserved by the simple group Ru of
Rudvalis
Bernardo Rodrigues
University of KwaZulu-Natal, Durban, South Africa
rodrigues@ukzn.ac.za

Coauthors: Jamshid Moori, North-West University, Mafikeng Campus, South
Africa

The simple group Ru of Rudvalis is one the 26 sporadic simple groups.
It has a rank-3 primitive permutation representation of degree 4060 which
can be used to construct a strongly regular graph Γ with parameters v =
4060, k = 1755, λ = 730 and µ = 780 or its complement a strongly regular
Γ̃ = (4060, 2304, 1328, 1280) graph. The stabilizer of a vertex u in this repre-
sentation is a maximal subgroup isomorphic to the Ree group 2F4(2) producing
orbits {u}, ∆1, ∆2 of lengths 1, 1755, and 2304 respectively. The regular graphs
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Γ, Γ̃,ΓR, Γ̃R, ΓS are constructed from the sets ∆1, ∆2, {u}∪∆1, {u}∪∆2, and
∆1∪∆2, respectively. If A denotes an adjacency matrix for Γ then B = J−I−A,
where J is the all-one and I the identity 4060×4060 matrix, will be an adjacency
matrix for the graph Γ̃ on the same vertices. We examine the neighbourhood
designs CD1755, CD1756, CD2304, CD2305 and CD4059 and corresponding bi-
nary codes C1755, C1756, C2304, C2305, and C4059 defined by the binary row span
of A, A+ I, B, B + I and A+ B respectively. A+ I and B + I are adjacency
matrices for the graphs ΓR, Γ̃R obtained from Γ and Γ̃, respectively, by including
all loops, and thus referred to as reflexive graphs.

The Asphericity of Injective Labeled Oriented Trees
Stephan Rosebrock
Pädagogische Hochschule Karlsruhe
rosebrock@ph-karlsruhe.de

Coauthors: Jens Harlander

The talk is about the Whitehead conjecture, which states that a subcomplex
of an aspherical 2-complex is aspherical. A finite presentation

P = 〈x1, ..., xn|R1, ..., Rm〉

where each relator is of the form xixk = xkxj is called a labeled oriented graph
(LOG) because we can associate an oriented graph to it in the following way:
For each generator xi there is a vertex i and for each relator xixk = xkxj there
is an oriented edge from i to j labeled by k. A labeled oriented tree (LOT)
is a labeled oriented graph where the underlying graph is a tree. LOTs play a
central role in the work on the Whitehead conjecture. Results of Howie imply
that the finite case of the Whitehead conjecture reduces, up to the Andrews-
Curtis conjecture, to the statement that LOT presentations are aspherical (We
call a presentation P aspherical if the standard-2-complex modeled over P is
aspherical). A labeled oriented tree is called injective, if each generator occurs
at most once as an edge label. We show here:

Theorem: Injective labeled oriented trees are aspherical.
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On the exponent of the Schur multiplier
Nicola Sambonet
Technion, Israel Institute of Technology, Haifa, Israel
sambonet@tx.technion.ac.il

We present several bounds for the exponent of the Schur multiplier of a finite
group. Some bounds are related to the multipliers of a normal subgroup and
its quotient, others are related to the derived length of a p-group. These results
arise from a wise choice of the representative cocycles, depending if the section
is well behaved with the exp G-power, or if it is well behaved with conjugation.
We discuss the relation of the bounds obtained with the previously known.

On a theorem of Tate
Jon Gonzalez Sanchez
University of the Basque Country
jon.gonzalez@ehu.es

Coauthors: Joan Tent

A classical result of Tate states that a finite group is p-nilpotent if and
only if the restriction map in cohomology from G to a Sylow p-subgroup is an
isomorphism in dimension 1. In this talk we will discuss how this result can be
extended to p-solvable groups and, in general to finite groups. As a consequence
we will show that the cohomology of normal subgroups in finite groups reads
the p-solvability. As a byproduct we will show that the p-length in a p-solvable
group and the number of nonabelian chief factors of order divisible by p is
bounded by the minimal number of generators of a Sylow p-subgroup.

2-groups with a fixed number of real conjugacy classes
Josu Sangroniz
University of the Basque Country
josu.sangroniz@ehu.es

Coauthors: Joan Tent

We study the finite 2-groups with a fixed number of real conjugacy classes.
The order of such groups can be arbitrarily large but we show that it can be
bounded if the orders of the elements in a generating set are also fixed. If the
number k of real classes is odd we show that the group order can be bounded
in terms of k and the nilpotency class although we conjecture that a bound in
terms only of k exists. We confirm this conjecture when k = 7.
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Real character degrees
Lucia Sanus
Universitat de Valencia
lucia.sanus@uv.es

In the last few years, several results on the set of the degrees of the real
valued irreducible characters have been obtained. Ideally, one would like to
relate the character degrees with the structure of the group.

Several classical results on the characters degrees of finite groups admit real
version. We present some of these theorems.

Submanifold Projection for Out(Fn)
Dmytro Savchuk
University of South Florida
dmytro.savchuk@gmail.com

Coauthors: Lucas Sabalka

One of the most useful tools for studying the geometry of the mapping
class group has been the subsurface projections of Masur and Minsky. We
propose an analogue for the study of the geometry ofOut(Fn) called submanifold
projection. We use the doubled handlebody Mn = #nS2 × S1 as a geometric
model of Fn, and consider essential embedded 2-spheres in Mn, isotopy classes
of which can be identified with free splittings of the free group. We interpret
submanifold projection in the context of the sphere complex (also known as the
splitting complex). We prove that submanifold projection satisfies a number of
desirable properties, including a Behrstock inequality and a Bounded Geodesic
Image theorem.

On an inertia factor group of O+
10(2)

TT Seretlo
North West University maheking campus South Africa
Thekiso.Seretlo@nwu.ac.za

Coauthors: J. Moori

The group G = 28:O+
8 (2) is a group of order 44590694400 and also a maximal

subgroup of index 527 of O+
10(2). In turn 210+16.O+

10(2) is a maximal subgroup
of the monster M = F1. The group G has three inertia factor groups namely,
O+

8 (2), SP (6, 2), 26:A8 and each is of index 1, 120, and 135 respectively
in O+

8 (2). The aim of this paper is to compute the Fischer Clifford matrices of
G, which together with its partial character tables are used to compute the full
character table of G. There are 53 Clifford matrices with sizes between 1 and
6. We also give the abstract specification of the group.
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Counting cyclic indentities in specific finite groups
Robert Shwartz
Ariel University
robertsh@ariel.ac.il

Coauthors: Yonah Cherniavsky, Avi Goldstein, Vadim Levit

Let Y be a n-cycle with the set of edges E = {e1, e2, ..., en}, and let G be
a finite group. In this talk we consider ln(G) which is the number of functions
f : E 7→ G, such f(e1)∗f(e2)∗. . .∗f(en) = f(en)∗f(en−1)∗. . .∗f(e1) = 1, where
1 is the identity element in G, which is a generalization of balanced labeling of
edges of a graph to non-abelian groups in the case where the graph is a cycle.
We show for every finite group G that l3(G) = |G| ∗ |Class(G)|, and l4(G) =
|G|2 ∗ |Class(G)|, where |Class(G)| is the number of conjugacy classes of the
group G. We also find formulas of l2n+1(G) and of l2n(G)for every metabelian
group with a normal abelian subgroup N , such that |cG(g)| = |G|/|G′| for every
g not in N . (For example G is a finite dihedral group).

A classification of primitive permutation groups with finite stabilizers
Simon M Smith
City University of New York and the University of Western Australia
sismith@citytech.cuny.edu

In this talk I’ll classify all infinite primitive permutation groups possessing a
finite point stabilizer, thus extending the seminal O’Nan–Scott Theorem to all
primitive permutation groups with finite point stabilizers.

A Metabelian Group Admitting Integral Polynomial Exponents
Dr Dennis Spellman
Temple University
lcsman@aol.com

Coauthors: A.M. Gaglione and S. Lipschutz

A classical result of W. Magnus has as a special case a faithful matrix rep-
resentation of a free metabelian group. We enlarge this group to a group of
matrices allowing integral polynomial exponents. We outline a proof that the
substitutions of integers for the variable induces a discriminating family of re-
tractions onto the original group. The argument is tricky as we must deal with
indeterminate forms 0/0.

38



New examples of partial difference sets in finite nonabelian groups
Eric Swartz
The University of Western Australia
eric.swartz@uwa.edu.au

A partial difference set (PDS) S in a finite group G is a set of elements of
G such that each nonidentity element g of G can be written as a product ab−1,
where a, b ∈ S, in either λ or µ different ways, depending on whether or not g
is in S. Whenever S = S−1 and 1 /∈ S, the Cayley graph Cay(G,S) is strongly
regular. Very few examples of PDSs are known, and there are especially few
known in nonabelian groups. In this talk, a new partial difference set S such
that S = S−1 and 1 /∈ S is constructed for each extraspecial group of order
p3 and exponent p2, where p is an odd prime, and a new general approach to
finding these sets is described.

G-irreducible subgroups of the exceptional algebraic groups
Adam Thomas
Imperial College London
a.thomas10@imperial.ac.uk

A subgroup of an algebraic group G is defined to be G-irreducible if it is
not contained in any parabolic subgroup of G. This is a generalisation of the
usual irreducible subgroup of GL(n, k). There is an easy Lemma to find all
G-irreducible subgroups when G is classical (An, Bn, Cn or Dn). We discuss
how to use this and other results to find all such subgroups of the exceptional
algebraic groups (G2, F4, E6, E7 or E8), in all characteristics, up to conjugacy.

FA-presentable groups and semigroups
Rick Thomas
Department of Computer Science, University of Leicester
rmt@mcs.le.ac.uk

The notion of FA-presentability is motivated by an interest in possible ap-
proaches for understanding computability in structures. A natural definition
would be to take some general model of computation such as a Turing machine;
a structure would then be said to be computable if its domain could represented
by a set which can be recognized by a Turing machine and if there were decision-
making Turing machines for each of its relations. Notwithstanding this, there
have been various ideas put forward to restrict the model of computation used;
whilst the range of possible structures would decrease, the computation could
become more efficient and certain properties of the structures might become
decidable.
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One interesting approach was introduced by Khoussainov and Nerode who
considered structures whose domain and relations can be checked by finite au-
tomata; such a structure is said to be FA-presentable. This was inspired, in
part, by the theory of automatic groups introduced by Epstein et al; however,
the definitions are somewhat different.

We will survey some of what is known about FA-presentable structures, con-
trasting it with the theory of automatic groups and posing some open questions.
We will focus on what is known about FA-presentable groups and semigroups.

When the commutation of two words gives abelianity
Witold Tomaszewski
Institute of Mathematics, Silesian University of Technology, Kaszubska 23, Gli-
wice, Poland
Witold.Tomaszewski@polsl.pl

N.D. Gupta has proved that groups which satisfy laws [x, y] ≡ [x,n y] for
n = 2, 3 are abelian and he has posed the question whether this theorem can be
satisfied for every n.

Every law [x, y] ≡ [x,n y] can be written in the form ab ≡ ba where a, b belong
to a free group F2 of rank two, and the normal closure of < a, b > coincides
with F2. Thus we get the following hypothesis for two words a, b in a free group
F2 of rank 2:

A law ab ≡ ba is equivalent to the abelian law if and only if the normal
closure of < a, b > equals F2.

This hypothesis is an open question. In this talk we discuss some results
and problems which appeared during the verification of this hypothesis.

Prime graphs of finite groups
Hung P. Tong-Viet
University of KwaZulu-Natal
Tongviet@ukzn.ac.za

Let G be a finite group. The prime graph of G is a graph whose vertex set is
the set of primes dividing some complex irreducible character degree of G and
there is an edge between two distinct primes u and v if and only if the product
uv divides some character degree of G. This graph has been studied extensively
over the last 25 years. One of the main questions in this area is to determine
which finite simple graphs could be the prime graph of finite groups. In this
talk, I will present some results concerning the groups whose prime graphs have
no triangles.
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Groups with all subgroups subnormal or soluble of bounded derived
length
Antonio Tortora
Universit di Salerno
antortora@unisa.it

Coauthors: K. Ersoy and M. Tota

A well-known result, due to W. Mohres [3], states that a group with all
subgroups subnormal is soluble, while a result proved, separately, by C. Casolo
[1] and H. Smith [4] shows that such a group is nilpotent if it is also torsion-
free. Later, Smith generalized these results to groups in which every subgroup
is either subnormal or nilpotent. More precisely, he proved, in [6], that a locally
(soluble-by-finite) group with all subgroups subnormal or nilpotent is soluble,
and the same holds for a locally graded group whose non-nilpotent subgroups
are subnormal of bounded defect. Also, in both cases, the nilpotency follows if
the group is torsion-free [5].

The purpose of this talk is to discuss locally graded groups with all subgroups
subnormal or soluble of bounded derived length [2].

References:
[1] C. Casolo, Torsion-free groups in which every subgroup is subnormal,

Rend. Circ. Mat. Palermo (2) 50 (2001), 321-324.
[2] K. Ersoy, A. Tortora and M. Tota, Groups with all subgroups subnormal

or soluble of bounded derived length, to appear in Glasgow Math. J.
[3] W. Mohres, Auflosbarkeit von Gruppen, deren Untergruppen alle sub-

normal sind, Arch. Math. 54 (1990), 232-235.
[4] H. Smith, Torsion-free groups with all subgroups subnormal, Arch. Math.

76 (2001), 1-6.
[5] H. Smith, Torsion-free groups with all non-nilpotent subgroups subnor-

mal, Topics in infinite groups, 297-308, Quad. Mat. 8, Dept. Math., Seconda
Univ. Napoli, Caserta, 2001.

[6] H. Smith, Groups with all non-nilpotent subgroups subnormal, Topics in
infinite groups, 309-326, Quad. Mat. 8, Dept. Math., Seconda Univ. Napoli,
Caserta, 2001.

Symplectic Alternating Algebras
Gunnar Traustason
University of Bath
gt223@bath.ac.uk

Coauthors: Layla Sorkatti (University of Bath)

Let F be a field. A symplectic alternating algebra over F consists of a
symplectic vector space V over F with a non-degenerate alternating form that
is also equipped with a binary alternating product · such that the law (u·v, w) =
(v ·w, u) holds. These algebraic structures have arisen from the study of 2-Engel
groups but seem also to be of interest in their own right with many beautiful
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properties. We will give an overview with a focus on some recent work on the
structure of nilpotent symplectic alternating algebras.

Certain monomial characters and character correspondences
Carolina Vallejo
Universidad de Valencia
carolina.vallejo@uv.es

We generalize a theorem of R. Gow on the monomiality of certain characters
of solvable groups in two ways. The first generalization allows us to provide a
canonical correspondence between certain characters of solvable groups and of
certain local subgroups.

On locally finite groups with bounded centralizer chains
Andrey Vasil’ev
Sobolev Institute of Mathematics
vasand@math.nsc.ru

Coauthors: Alexander Buturlakin (Sobolev Institute of Mathematics)

The c-dimension of a group G is the maximal length of a nested chain of
centralizers of subsets in G. In 2009 E.I. Khukro proved that a periodic locally
soluble group of finite c-dimension k is soluble of k-bounded derived length.
A.V. Borovik conjectured that the number of non-abelian simple composition
factors of a locally finite group of finite c-dimension k is also k-bounded. We
prove this conjecture.

Theorem. If G is a locally finite group of finite c-dimension k, then the
number of non-abelian simple composition factors of G is less than 5k.
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An analogue of the Frattini Argument for Hall subgroups
Evgeny Vdovin
Sobolev Institute of Mathematics, Novosibirsk
vdovin@math.nsc.ru

Coauthors: Danila Revin

The following simple statement is friquently used in the finite group theory.
Frattini Argument. Let A be a normal subgroup of a finite group G and

let S be a Sylow p-subgroup of A for a prime p. Then G = ANG(S).
Let π be a set of primes. A subgroup H of a group G is called a π-Hall

subgroup if every prime divisor of |H| belongs to π and |G : H| is not divisible
by the elements from π.

Recall that a group G satisfies Eπ if it possesses a π-Hall subgroup.
It is easy to show that if A is a normal subgroup of a finite group G and H

is a π-Hall subgroup of G then H ∩A is a π-Hall subgroup of A.
The following statement is the main result of the talk:
Theorem Let π be a set of primes, A be a normal subgroup of a finite

Eπ-group G. Then A possesses a π-Hall subgroup H such that G = ANG(H).
We also provide examples showing that the condition G ∈ Eπ in Theorem

is essential and that the equality G = ANG(H) does not hold for every π-Hall
subgroup H of A.

Out(Fn), GL(n,Z) and everything in between: automorphism groups
of right-angled Artin groups
Karen Vogtmann

A right-angled Artin group (RAAG) is a finitely-generated group which can
be presented by saying that some of the generators commute. Free groups and
free abelian groups are the extreme examples of RAAGs. Their automorphism
groups GL(n,Z) and Out(Fn) are complicated and fascinating groups which
have been extensively studied. In these lectures I will explain how to use what
we know about GL(n,Z) and Out(Fn) to study the structure of the (outer)
automorphism group of a general RAAG. This will involve both inductive local-
to-global methods and the construction of contractible spaces on which these
automorphism groups act properly. For the automorphism group of a general
RAAG the space we construct is a hybrid of the classical symmetric space on
which GL(n,Z) acts and Outer space with its action of Out(Fn).
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Zeta functions of groups and rings: recent developments
Christopher Voll
University of Bielefeld

Zeta functions of groups are Dirichlet type generating functions which encode
group-theoretic data, for example about subgroup or representation growth of
infinite groups. Analogously, zeta functions of rings are used in the study of
asymptotic properties of rings. A classical example of such a zeta function
is the Dedekind zeta function enumerating ideals in the ring of integers of a
number field.

Analytic and arithmetic properties of zeta functions of groups and rings
often reflect and reveal interesting algebraic properties. In many cases, for
instance, zeta functions of groups are Euler products, indexed by the places of a
number field. The factors of such Euler products can be studied with a variety
of methods, including algebro-geometric ones. Often these local zeta functions
have fascinating rationality and symmetry properties.

In my talk I will survey some recent developments in the theory of zeta func-
tions of groups and rings. I will concentrate on general reciprocity results for
local zeta functions and new results on representation zeta functions of arith-
metic groups.

Recent Developments in the Study of the Chermak-Delgado Lattice
of a Finite Group
Elizabeth Wilcox
State University of New York at Oswego
Elizabeth.wilcox@oswego.edu

Coauthors: Ben Brewster, Peter Hauck

For a finite group G with subgroup H, the Chermak-Delgado measure of
H is the product of the order of H with the order of the centralizer of H.
The set of all subgroups with maximal measure forms a sublattice within the
subgroup lattice of G, called the Chermak-Delago lattice of G. Recently there
have been many developments in the study of the Chermak-Delgado lattice,
including examples with interesting Chermak-Delgado lattices and theorems for
constructing groups with a specific Chermak-Delgado lattice. This talk will
discuss both kinds of results and recent developments.
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Tadpole Labelled Oriented Graph Groups and cyclically presented
groups
Gerald Williams
University of Essex
gwill@essex.ac.uk

Coauthors: Jim Howie

A Labelled Oriented Graph group (LOG group) is a group defined by a
presentation in which each relation is of the form xixk = xkxj (that is, each
relation conjugates one generator to another). The presentation can be encoded
using a labelled oriented graph. We consider the case when the underlying graph
is a tadpole graph and show that the LOG group is the natural HNN extension of
a cyclically presented group (which, in certain cases, is a generalized Fibonacci
group). We explore properties of the cyclically presented group and the LOG
group, and the relationships between the groups.

Splitting theorems for pro-p groups acting on pro-p trees and 2-
generated pro-p subgroups of free pro-p products with procyclic amal-
gamations
Theo A. D. Zapata
University of Brasilia
zapata@mat.unb.br

Coauthors: W. Herfort (TU Wien, Austria) and P. Zalesskii (UnB, Brazil)

We present the result that, under a certain condition, free pro-p products
with procyclic amalgamation inherit from its free factors the property of each
2-generated pro-p subgroup being free pro-p. This generalizes known pro-p
results, as well as some pro-p analogues of classical results in Combinatorial
Group Theory. To present our theorem we discuss certain splitting theorems
for pro-p groups acting virtually freely on pro-p trees; for instance, any infinite
finitely generated pro-p group acting on a pro-p tree such that the restriction of
the action to some open subgroup is free splits over an edge stabilizer either as
an amalgamated free pro-p product or as a pro-p HNN-extension.
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Intersecting free subgroups in virtually free groups
Alexander Zakharov
Moscow State University
zakhar.sasha@gmail.com

We prove an estimate for the rank of intersection of free subgroups in funda-
mental groups of finite graphs of groups with finite edge groups. This estimate
is analogous to the Hanna Neumann inequality for free groups and the S.V.
Ivanov and W.Dicks estimate for free products of groups. An estimate for the
rank of intersection of free subgroups in virtually free groups follows from our
result as a corollary. We use Bass-Serre theory in the proof.

Pro-p ends.
Pavel Zalesskii
Department of Mathematics, University of Brasilia
pz@mat.unb.br

Coauthors: Thomas Weigel

We shall discuss a pro-p analogue of Stallings’ theory of ends.

On a finite 2,3-generated group of period 12.
Andrei Zavarnitsine
Sobolev Institute of Mathematics
zav@math.nsc.ru

We use calculations in the computer algebra systems GAP and Magma along
with some theoretic results to determine the structure of the largest finite group
of period 12 that is generated by an element of order 2 and an element of order
3. In particular, we prove that this group has order 266.37.
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Hausdorff dimension in pro-p groups
Amaia Zugadi-Reizabal
University of the Basque Country
amaia.zugadi@ehu.es

Coauthors: Benjamin Klopsch (Otto-von-Guericke-Universität, Magdeburg)

Barnea and Shalev showed that a p-adic analytic pro-p group has finite
Hausdorff dimension spectrum with respect to the pth power filtration. In the
same work, it was conjectured that the converse holds as well. We prove that
the conjecture is true in the solvable case and we also investigate the behaviour
of the Hausdorff spectrum in some other cases.
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