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The early mathematical education of Ada Lovelace

CHRISTOPHER HOLLINGS and URSULA MARTIN

University of Oxford, UK

ADRIAN RICE

Randolph-Macon College, USA

Ada, Countess of Lovelace, is remembered for a paper published in 1843, which translated and
considerably extended an article about the unbuilt Analytical Engine, a general-purpose
computer designed by the mathematician and inventor Charles Babbage. Her substantial
appendices, nearly twice the length of the original work, contain an account of the principles
of the machine, along with a table often described as ‘the first computer program’. In this
paper we look at Lovelace’s education before 1840, which encompassed older traditions of
practical geometry; newer textbooks influenced by continental approaches; wide reading; and
a fascination with machinery. We also challenge judgements by Dorothy Stein and by Doron
Swade of Lovelace’s mathematical knowledge and skills before 1840, which have impacted
later scholarly and popular discourse.

Introduction

I
n June 1833 the seventeen year-old Ada Byron and her mother, Lady Byron,

attended a demonstration by Charles Babbage of a prototype of his Difference

Engine. Designed to calculate and print successive values of a formula using the

method of finite differences, and thus reduce the labour of producing mathematical

tables, it captivated them both. Lady Byron described it as a ‘thinking machine’,1

while Ada went to lectures on the engine by Dionysius Lardner, read his article in

the Edinburgh Review (Stein 1985, 46), and studied Babbage’s engineering drawings.

Many years later, Sophia De Morgan recalled that:

Miss Byron, young as she was, understood its working, and saw the great beauty

of the invention.

(De Morgan 1882, 89)

In 1840–41 Ada, by now the Countess of Lovelace,2 studied calculus and higher

mathematics with Sophia’s husband, Augustus De Morgan, and in 1843 published
the paper for which she is now famous: her translation, with extensive appendices, of

Luigi Menabrea’s Notions sur la Machine Analytique de M. Charles Babbage (Love-

lace 1843).

1Dep.Lovelace Byron (Bodleian Library, Oxford), Box 77, Lady Byron to Dr William King, 21 June

[1833], f. 217r. Subsequent references to this archive will appear in the text within square brackets; ‘Dep.

Lovelace Byron, Box n’ will be abbreviated as ‘LB n’. Other abbreviations employed will be ‘ADM’ for De

Morgan and ‘AAL’ for Lovelace.
2In 1835 Ada Byron married Lord William King (unrelated to Lady Byron’s friend Dr William King) who

became the Earl of Lovelace in 1838. For readability we refer to her as ‘Ada Byron’ or ‘Ada Lovelace’.
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In the two hundred years since her birth, opinions of Lovelace’s ability have

ranged from ‘genius’ to ‘charlatan’. In her lifetime she was famous as the daughter of

the poet Lord Byron, brought up by her mother following her parents’ acrimonious

separation shortly after her birth: subsequently her life, as much as her scientific

work, has inspired numerous biographies and creative endeavours.
In the next section we review assessments of Lovelace’s mathematical ability, and

their reception in technical and popular writing. In the third section we consider

Lovelace’s eclectic mathematical education before 1840, indicating the focus on prac-

tical mathematics and synthetic geometry, coupled with an interest in mechanical

devices, and wide reading of the science writing of the day. In the final section (Anal-

ysis) we emphasize that Lovelace’s mathematical education spanned the transition

from an earlier practical tradition to a more analytic approach based on continental

mathematics. This underpins our challenge to influential claims by Dorothy Stein,
based on assessments of Lovelace’s correspondence with Mary Somerville, that she

was mathematically weak, and by Doron Swade, that in 1834 she lacked the back-

ground to have studied Lardner’s article on Babbage’s Difference Engine.

This paper complements our work on Lovelace’s studies with Augustus De Mor-

gan in 1840 and 1841 (Hollings et al. 2017), in which contextual analysis allows us to

present a corrected ordering of the archive material, and thus to challenge further

claims by Stein of Lovelace’s mathematical weakness (Stein 1985, 84, 89–91), and to

assess De Morgan’s favourable judgment of her potential for serious mathematical
work [LB 339, ADM to Lady Byron, 21 January 1844, f 2]. That paper presents De

Morgan’s skill as a teacher in developing Lovelace’s habits of study, repairing gaps

in her earlier education, and introducing her to research questions of the day; and

shows Lovelace’s emerging mathematical strengths of attention to detail, interest in

big questions, and desire to tackle problems from first principles. These two papers

appear to be the first studies by historians of mathematics of the Lovelace archive,

and taken together provide an assessment of her mathematical background prior to

her most famous work.

Changing perceptions of Lovelace

Lovelace was respected by her scientific peers: for example Babbage wrote to Fara-

day in 1843 of

that Enchantress who has thrown her magical spell around the most abstract of

Sciences and has grasped it with a force which few masculine intellects (in our
own country at least) could have exerted over it.

(James 1996, 164)

Augustus De Morgan, while supporting the widespread view that women were not

strong enough for the demands of mathematics (see Winter 1998 for an analysis),

wrote to her mother of her ‘power of thinking … utterly out of the common way for

any beginner, man or woman’, continuing:

Had any young beginner, about to go to Cambridge, shown the same power, I

should have prophesied first that his aptitude at grasping the strong points and

the real difficulties of first principles would have very much lowered his chance of
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being senior wrangler; secondly, that they would have certainly made him an

original mathematical investigator, perhaps of first rate eminence.

[LB 339, ADM to Lady Byron, 21 January 1844, f 2]

On her death, an anonymous obituary recorded (Examiner 1852):

The Countess of Lovelace was thoroughly original, and the poet’s temperament

was all that was hers in common with her father. Her genius, for genius she pos-

sessed, was not poetic, but metaphysical and mathematical, her mind having

been in the constant practice of investigation, and with rigour and exactness.

Similar references occur throughout the nineteenth century, for example to the ‘noble

and all-accomplished’ lady, author of the ‘profound, luminous and elegant notes’

forming ‘by far the most instructive’ part of the Menabrea translation (Timbs 1860,

x), who wrote ‘with all the thorough knowledge of detail which a woman can so well

master’ and displayed ‘a surprising knowledge of analysis’ (Farr 1871, 45). Ada

Lovelace’s daughter-in-law, Mary, Countess of Lovelace, quoted this obituary in her

Epilogue to the first biography of Lady Byron (Colburn Mayne 1929), and noted

Ada’s position as a member of the scientific elite:

Her few real friendships were with people of intellectual power, Babbage for

instance, and Mrs Somerville, who had a great appreciation of her. Her mathe-

matical teacher, Professor Augustus De Morgan, said of her that if she had been
a man she could have been Senior Wrangler.

The volume includes the complete letter from De Morgan to Lady Byron, so the

observant reader can see that this is precisely the opposite of what De Morgan said.

The work of Babbage and Lovelace was never entirely forgotten: Hartree (1949,

70) asserted that ‘she must have been a mathematician of some ability’, and noted

her remark in the 1843 paper that the engine can only ‘do whatever we know how to

order it to perform’: in his 1950 paper on whether a machine can think, Alan Turing
challenged this view, which he called ‘Lady Lovelace’s objection’.

The industrialist B V Bowden edited Faster than thought, an influential collection

of essays on the theory and practice of computing, which included both Lovelace’s

paper, and a short biography, based on Bowden’s conversations with her descend-

ants. He described her as ‘a mathematician of great competence’ (Bowden 1953, xi)

with ‘a profound understanding of the principles of the machine’ (Bowden 1953, 23).

A striking indication of the way class, as well as gender, shaped opinions of Lovelace,

is the review of Bowden’s (1953) book which begins:

We are accustomed to seeing pictures of sleekly streamlined modern electronic

computers with similarly endowed, female operators poised at the controls. It is

surprising then to find a book on these machines starting off with a handsome,
old-fashioned portrait of a nineteenth-century lady mathematician.

Bowden, Hartree, and Turing had sufficient computing background to read Love-

lace’s paper, and it was thanks to Bowden that B H Neumann became the first
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mathematician to look at her correspondence with Augustus De Morgan, though he

felt that her mathematics ‘owed even more’ to Babbage (Neumann 1973, 95).

The first biographies to pay substantial attention to Lovelace focused on the

Byron family. Malcolm Elwin (1975) described the demanding educational regime

imposed by her mother, including basic mathematics, while the first full length biog-
raphy, by Doris Langley Moore (1977), devoted just a few pages to the 1843 notes:

quoting De Morgan’s judgement of Lovelace’s ability, Langley Moore summarized

her letters to him as:

… enquiring, speculating, arguing, filling pages with equations, problems, solu-

tions, algebraic formulae, like a mathematician’s cabalistic symbols.

(Langley Moore 1977, 99)

Langley Moore was also the first biographer to draw attention to what she called

Lovelace’s considerable ‘arrogance’ and ‘self regard’: later authors have gone further
and used Lovelace’s sometimes flamboyant remarks—for example ‘I do not believe

that my father was (or ever could have been) such a Poet as I shall be an Analyst’

(Toole 1992, 215)—coupled with her numerous physical ailments, as evidence of

mental instability. Most striking is Dorothy Stein (1985), who devotes a seventeen-

page appendix to a posthumous diagnosis of manic-depression.

Stein was, however, the first biographer to analyse in detail Lovelace’s scientific

writings. She argued that her command of mathematics was actually rather limited,

pointing to several elementary errors, and her professed inability to handle algebraic
substitutions as ‘evidence of the tenuousness with which she grasped the subject of

mathematics’, claiming that such evidence ‘would be difficult to credit about one

who succeeded in gaining a contemporary and posthumous reputation as a mathe-

matical talent, if there were not so much of it’ (Stein 1985, 90).

Indeed Hyman (1982), in his biography of Babbage, while respecting Lovelace’s

achievements, had already questioned the 1843 paper as evidence of her mathemati-

cal reputation, observing guardedly that while ‘mathematicians all over Europe

thought her a splendid addition to their number’ (Hyman 1982, 196), Lovelace

…worked under Babbage’s careful guidance and [the programs] are student exer-

cises rather than original work. Indeed there is not a scrap of evidence that Ada

ever attempted original mathematical work.

(Hyman 1982, 198)

Doron Swade (2000, 166) went far further, dismissing Lovelace as a ‘talented begin-

ner, a precocious novice’, challenging what he called ‘well-intentioned posthumous

elegies’, such as Sophia De Morgan’s assertion that she quickly understood

Babbage’s engine, on the grounds that Lovelace did not learn the ‘necessary elemen-
tary mathematics of the Engine (the method of finite differences)’ until 1841, in her

studies with De Morgan. Even more forthright was Bruce Collier (1990) who

described Lovelace as

mad as a hatter … with the most amazing delusions about her own talents … the

most overrated figure in the history of computing.
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Betty Toole (1992) published transcriptions of a selection of Lovelace’s letters, omit-

ting most of the mathematical content, and argued that to judge Lovelace’s mathe-

matical ability solely on the basis of the questions she asked her teachers is

misleading, as she only wrote to them when she had problems. Toole portrays Love-

lace as ‘a synthesizer and a visionary’ who

saw the need for a mathematical and scientific language which was more expres-

sive and which incorporated imagination

(Toole 1992, 2)

and uses Lovelace’s phrase ‘poetical science’ [LB 44, AAL to Lady Byron, f 210] to

characterize the approach.

Recent popular biographers have developed this line: for Woolley (2000, 276),

Ada was not a great mathematician … as De Morgan implied…, unlike Mary

Somerville, she really was not sufficiently engaged with the details to be one.

This is a misinterpretation of De Morgan who actually argued the opposite—that

Somerville’s achievement was pedantic compared to Lovelace’s deeper understand-

ing. Woolley asserts that

Ada’s notes are not to be assessed as a work of mathematics, but as a work of a

more speculative, experimental nature … She showed what imagination could

reveal that mathematics alone could not …. This is what poetical science had

enabled her to do: see something that would remain invisible to the rest of the

world for a century more…

Frustrated at ever more extravagant claims that Lovelace foresaw quantum mechan-
ics, invented the CD, or brought about Silicon Valley, Haigh and Priestley (2015)

argued for a more measured approach, observing that the search for heroines

presents a distorted view of the overall development of computing: they use Google

n-grams to show that references to Lovelace far outweigh those to others with a

much greater claim to influence.

Controversies about Lovelace’s mathematical talents, and in particular a reliance

on Stein’s 1985 analysis, have informed broader debate about her contribution. For

example, Babbage scholar Allan Bromley is fairly neutral in Bromley (1982), which
appeared before Stein’s book, whereas by 1990 his essay in Aspray’s (1990) overview

of computing history, concludes ‘Not only is there no evidence that Ada ever pre-

pared a program for the Analytical Engine, but her correspondence with Babbage

shows that she did not have the knowledge to do so’. Misa (2016) provides a welcome

and thorough survey of the debate, concluding that the 1843 notes are ‘a product of

an intense intellectual collaboration’. The latest edition of Campbell-Kelly et al.

(2013) remains unconvinced however.

A metabiography in the sense of Sapp (1990) might assess these varying accounts
of Lovelace’s life and contribution against changing contexts of class, gender, or

mental stability; changing perceptions of mathematics amongst both professional

mathematicians and the general public; or changing perceptions of how to present

women scientists. We restrict our attention in this paper to Lovelace’s mathematics,
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and adopt the approach of other recent work on women and science in treating her as

a member of a scientific community, alongside Babbage, De Morgan and Somerville,

rather than constraining her by a narrative of exceptionalism or marginality (Jones

and Hawkins 2015).

Ada Byron’s childhood education

It was the custom in early nineteenth-century England for upper-class girls to be edu-

cated by governesses, often rather strictly: the subjects offered might include some

arithmetic, astronomy and geometry alongside languages and music (Hughes 1993,

71), though the typical level of attainment might be slight and involve much rote-
learning (Hughes 1993, 42). Lady Byron, who had herself had a good mathematical

education for the time, avoided this approach, considering learning to think more

important than memorization [LB 119, ff 216–217], and did much of Ada’s teaching

herself. Recognized as an educational reformer (Taylor 1998), she followed the prin-

ciples of the Swiss reformer Pestalozzi in establishing several village schools whose

‘learning by action’ combined text-books with physical work and practical skills.

Although it is sometimes claimed that Lady Byron forced her daughter to learn

mathematics to keep her from poetry, there is little evidence of this: however many
letters seek advice from her physician William King, and her own childhood tutor,

the Unitarian minister William Frend.

Her ‘happy and intelligent’ [LB 71, Lady Byron to William Frend, 23 August

1818, f 34] daughter started to learn her letters from her mother when she was nearly

three. In 1821 a Miss Lamont was appointed as a temporary governess: she docu-

mented a demanding schedule,

… lessons in the morning in arithmetic, grammar, spelling, reading, music, each

no more than a quarter of an hour long – after dinner, geography, drawing,
French, music, reading, all performed with alacrity and docility.

[LB 118, item 5, Governess’s diary, 14 May 1821, f 4]

In May 1821 the diary records,

Commenced giving instructions to Miss Byron… The first trial was in arithmetic.

She adds up sums of five or six rows of figures, with accuracy; she is deliberate

and correct in the process, and takes an interest in the performance.

[LB 118, item 5, Governess’s diary, 14 May 1821, f 2r]

Miss Lamont was also required to keep a diary in Ada’s name:

I want to please Mama very much, that she and I may be happy together… The

French has not interested so much as some others – and one night I was rather

foolish in saying that I did not like arithmetic & to learn figures, when I did – I

was not thinking quite what I was about. The sums can be done better, if I tried,

than they are.

[LB 118, Item 6, ‘Ada’s’ journal]
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Ada’s later letters to her mother bubble over with enthusiasm: Italian, music, draw-

ing, geography, her cat and unexpected kittens, summaries of the Sunday sermon,

and her mathematics. Aged ten, she wrote about the so-called rule of three:

I have been puzzling hard at a sum in the rule of three which I could not do, the

question is ‘If 750 men are allowed 22500 rations of bread per month, how many

rations will a garrison of 1200 men require?’

[LB 41, Ada Byron to Lady Byron, 1 June 1826, f 27r]

In the same letter, Ada said she was ‘very desirous to master those overs in the sums

of division’ and added

I think by the time you come back I may have learnt something about decimals, I

attempted the double rule of three but I could not understand, however I will not

give it up yet.

[LB 41, Ada Byron to Lady Byron, 1 June 1826, ff 27r–27v]

Her questions indicate that rather than learning by rote, she wanted to understand.

As she explained to her mother: ‘…the book does not teach as well as you do’.

Ada was introduced to geometry at the age of twelve, thanking her mother for the

‘entertaining pamphlet you left me on that subject…, which I found very amusing

indeed’. Although confessing that ‘I am a little afraid of the Theorems’, she nonethe-

less resolved to ‘attack them boldly & do my best’ [LB 41, Ada Byron to Lady Byron,
22 November 1828, f 78r]. Even in these childhood letters, we see an intelligent,

inquisitive and tenacious mathematical learner who would go on to study higher

mathematics, and enjoy doing so.

In line with Pestalozzi’s ideas, practical skills were encouraged, whether playing

with toy bricks [LB 118, Item 5] or dissecting a dragonfly [LB 118, Item 6]. Shortly

before her father’s death, Lady Byron wrote to him of Ada’s ‘mechanical ingenuity—

her self-invented occupations being the manufacture of ships and boats’ (Prothero

1904, 330). In 1828 she became fascinated by flying, asked Lady Byron for a book on
the anatomy of birds and ‘had great pleasure in looking at the wing of a dead crow’.

She made some wings from paper, silk and feathers:

My wings are going on prosperously but do not expect to see a pair of well pro-

portioned wings though they are quite sufficiently so for me to explain to you all

my ideas on the subject of flying.

[LB 41, Ada Byron to Lady Byron, 7 April 1828, f 57v]

She hoped to write a book on ‘Flyology’, and she had plans for a flying machine that

would be powered by steam, the cutting-edge technology of the age:

a thing in the form of a horse with a steamengine in the inside so contrived as to

move an immense pair of wings, fixed on the outside of the horse, in such a man-

ner as to carry it up into the air while a person sits on its back.

[LB 41, Ada Byron to Lady Byron, 7 April 1828, ff 57v–58r]
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Shortly after Ada’s thirteenth birthday, Lady Byron again sought the advice of Dr

William King: while she was most interested in her daughter’s education in ‘Morals,

History, and Political Economy’, she also wanted Ada to study ‘The principles of

Natural History’, and she encouraged her interests in astronomy. She described

Ada’s knowledge of mathematics:

Arithmetic, the first part of Algebra & Paisley’s [sic] “Practical Geometry”. Pres-

ent information on these subjects confined to some general ideas of the value of

numbers, without facility in working them, & to some acquaintance with the
problem in the 1st part of Paisley. Great interest in such pursuit.

[LB 77, Lady Byron to Dr King, 7 January 1829, f 35r]

C W Pasley’s (1814) Practical geometry was intended for self-study, or for use by mil-
itary instructors. An approach very much in the spirit of Pestalozzi, it covered the

basics of geometry, of the kind needed by soldiers, surveyors or engineers, entirely

through practical instructions for making technical drawings, and stopping short of

any explicit algebra or Euclidean geometry.

Despite interruptions from illness, and a lengthy foreign tour with her mother,

Ada retained her interest in mathematics throughout her teenage years. In 1834, she

wrote to William Frend about rainbows:

I am very much interested on the subject just now, but I cannot make out one

thing at all, viz: why a rainbow always appears to the spectator to be an arc of a

circle. Why is it a curve at all, and why a circle rather than any other curve? I

believe I clearly understand how it is that the colours are separated, and the differ-

ent angles which the different colours must make with the original incident ray. I
am not sure that I entirely understand the secondary rainbow.

[LB 171, Ada Byron to William Frend, 15 March 1834, ff 127r–127v]

She speculated correctly:

Is the spectator’s eye supposed to be in the centre of the circle of which the arc of

the rainbow forms a portion?

Motivated to repair the gaps in her mathematical education, in March 1834 she

asked Dr King for further help. ‘My wish’, she wrote,

is to make myself well acquainted with Astronomy, Optics &c; but I find that I

cannot study these satisfactorily, for want of a thorough acquaintance with the
elementary parts of Mathematics.

[LB 172, Ada Byron to Dr King, 9 March 1834, f. 126v]

What she needed, she said, was a course in pure mathematics, by which she meant
basic arithmetic, algebra, and geometry: the extent of mathematical education for

most men who went to university, and a level reached by very few women. In his

reply, King recommended the books he had used in his own university studies

twenty-five years before, describing ‘a Complete Cambridge Course’:

228 BSHM Bulletin



Begin with Euclid, then Plane & Spherical Trigonometry, which is found at the

end of Simson’s Euclid, then Vince’s Plane & Spherical Trigonometry, then

Bridge’s Algebra.

[LB 172, Dr King to Ada Byron, 15 March 1834, ff 128r–128v]

His advice on how to study was similarly outdated:

The only mode of study of any use is ¡1�. to read and understand the proposi-

tion. 2�. Master the proposition by the help of the figure without the text. 3�. Do

the same by drawing the figure yourself. 4�. Write down the proposition on paper

: not verbatim, but still fully : and taking care to arrange the steps lucidly on
paper not writing continuously as in the printed book. … 5�. Repeat all this by

heart, without book or figure. 6�. Do the same in your walks, carrying the figure

in your pocket on a Card if necessary. 7�. This must be repeated daily with the

same proposition till it is as familiar to the mind as your own name. 8�. The
words of each proposition … must be fixed in your mind, with their number, so

that you could repeat the Book through.

[LB 172, Dr King to Ada Byron, 15 March 1834, ff 128v–129r]

Nonetheless, Ada started work with enjoyment. Within a fortnight, she could report

that she was

getting on very well so far, with Euclid. I usually do four new propositions a day,

and go over some of the old ones. I expect now to finish the 1st book in less than

a week.

[LB 172, Ada Byron to Dr King, 24 March 1834, f 131r]

By mid-April, Ada was conjecturing her own variation on Pythagoras’ theorem:

Can it be proved … that equilateral triangles being constructed on the sides of a

right angled triangle, and also one on the hypotenuse, the sum of the triangles on

the sides is equal to the triangle on the hypotenuse? … It strikes me that it ought
to be as demonstrable as when the figures are four-sided & equilateral.

[LB 172, Ada Byron to Dr King, 13 April 1834, f 132r]

‘You will soon puzzle me in your studies’ replied King, apologizing that

When I was at College we had few problems deduced from Euclid. We got up a

set of books and seldom went out of them, except the high men, i.e., the first 4 or
6 Wranglers, i.e., the men of the first class.

[LB 172, Dr King to Ada Byron, 24 April 1834, f 133r]

In just seven weeks, she had reached the bounds of his expertise.

At about the same time, Ada met Mary Somerville, who, although of the same

generation as Dr King, was at the forefront of the introduction of newer continental

mathematical ideas to British readers, through her exposition of Laplace’s
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M�ecanique c�eleste, published in 1831 as The mechanism of the heavens. The Somer-

ville family chaperoned Ada Byron in London’s scientific and literary society, intro-

ducing her both to her future husband, and to Charles Babbage. After her marriage,

Ada maintained her mathematical interests, writing to Somerville in 1835:

I now read Mathematics every day & am occupied in Trigonometry & in prelimi-

naries to Cubic & Biquadratic Equations. So you see that matrimony has by no

means lessened my taste for those pursuits, nor my determination to carry them

on….

[Somerville Papers (Bodleian Library, Oxford), Dep. c.367, Folder MSBY-3, Ada

King to Mary Somerville, 1 November 1835, f 55v]

Her letter indicates that she was working through David Brewster’s English edition
of Legendre’s Elements of geometry and trigonometry. She asked Somerville

for help with an exercise (Legendre 1822, 288) deriving formulae for sin (a ¡ b) and

cos (a ¡ b) from the addition formulae:

sin ðaþ bÞ ¼ sin a cos bþ sin b cos a

R
(1)

cos ðaþ bÞ ¼ cos a cos b� sin a sin b

R
(2)

Somerville pointed out that the solution was simply a matter of substituting ¡b for b,

and indeed the formulae sin (¡ x) D ¡sin x and cos (¡ x) D cos x were introduced a

few pages earlier, alongside the definitions of the trigonometric functions (Legendre

1822, 283). A couple of weeks later, Ada was asking a similar, and only slightly

harder, question.
Stein describes this exchange as ‘rather startling, for it reveals that Ada had not

progressed very far; despite hard work, skill and ingenuity in the manipulation of

symbols did not come easily to her.… It was a principle that would continue to elude

her’ (Stein 1985, 56).

This, then, was the extent of Lovelace’s mathematical education prior to the

beginning of her course of study with De Morgan in the summer of 1840.

Analysis

Lovelace’s early mathematical education can be viewed in a broader context of

changes in British mathematics (see for example Flood et al. 2011). ‘Practical math-

ematics’, exemplified by Pasley, the arithmetic and geometry needed for accounting,

surveying, navigation and warfare, had long been a staple of education for anyone

above the labouring classes. Those with the opportunity to move beyond this, might,

like Lady Byron, have learned enough algebra to solve simple equations, and some

Euclidean geometry and trigonometry from textbooks such as Vince (1800).
Frend and King were products of the old-fashioned university system described

by King to Ada: her later mentors, Babbage, De Morgan, and Somerville, were at

the heart of attempts to change it, and to align mathematical education and research

with newer more rigorous approaches emerging from Europe (Craik 2016).
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The widespread availability and use of elementary mathematics also led to a sur-

prising familiarity with mathematics in popular culture—young ladies did examples

from Euclid for pleasure, periodicals like The Ladies’ Diary published mathematical

questions and readers’ answers, and astronomy was a popular pursuit. A number of

works, such as Somerville’s 1834 On the connexion of the physical sciences, set out to
explain science to the general reader in mathematical terms, but without explicit

mathematics.

Although Lovelace was enthusiastic about mathematics and science, her back-

ground when she started studying with De Morgan in 1840 was very patchy. There is

evidence of childhood arithmetic, Pasley’s practical geometry, a little Euclid, and

observational astronomy; she had started to tackle the somewhat old-fashioned

books recommended by Dr King, and been introduced to more recent treatments by

Mary Somerville. While King, Somerville, and Frend are sometimes described as
‘tutors’, they did not provide regular face-to-face instruction, but were unpaid family

friends, who made suggestions for what to read, which Ada followed up with ques-

tions by letter when she encountered difficulties. It is hard to interpret remarks like ‘I

read Mathematics every day’: did she work hard at every point, or skim material she

found less congenial? Certainly, her later studies with De Morgan seem to be where

she learned more reflective habits of study, to set realistic expectations, and to go

more slowly (Hollings et al. 2017).

The letters show evidence of an enquiring mind, stretching her correspondents
through formulating her own questions about rainbows or variants of Euclid. She

retained her childhood interest in mechanical devices, keen to get hold of mathemati-

cal models to accompany her studies of spherical trigonometry, and pleased to

accompany her mother on a tour of factories in 1834 (Stein 1985, 46). She, and her

mother and husband, also read the latest scientific works, for example the Bridge-

water Treatises of Babbage (1837) and Whewell (1833), and works by Somerville and

von Humboldt.

We can now return to the claims of Stein and Swade regarding the extent of Love-
lace’s mathematical knowledge prior to her studies with De Morgan.

Stein inferred from Ada’s seemingly trivial questions to Mary Somerville about

trigonometry that her mathematical (and, in particular, algebraic) ability in the mid-

1830s was low. However, Ada’s questions become more understandable when one

realizes that, until she read Legendre, her study of trigonometry had been entirely in

the older synthetic tradition, in which algebra was not used. Dr King had told her to

study Vince’s Trigonometry, which proved (1) and (2) by an elaborate geometric con-

struction (Vince 1800, 55), without reference to ‘negative’ angles, or formulae such
as sin (¡ x) D ¡ sin x: only lengthy verbal explanations in terms of ‘complements’

and ‘supplements’ of angles, in place of the crisper algebraic treatment of later work.

Thus Ada’s query shows merely that she had overlooked the importance of the newer

algebraic formulae, which she had first encountered only a few pages before.

We turn now to Swade’s claim that Lovelace, who did not study the theory of

finite differences until 1841, lacked the knowledge to understand Dionysius

Lardner’s 1834 paper on Babbage’s Difference Engine (Lardner 1834). Lardner was

a science popularizer: his 64-page paper combined advocacy for the importance of
the engines, a plea for their construction, and an idea of the mechanisms ‘conveying,

even to readers unskilled in mathematics, some satisfactory notions of a general

nature on this subject’ (Lardner 1834, 267). The method of differences occupies only

eight pages, explained entirely through a lengthy worked arithmetical example, with

Volume 32 (2017) 231



no reference to the mathematical theory. A further fourteen pages explain the repre-

sentation of decimal numbers by dials, and the mechanisms—the ‘wheel work’—for

addition and carrying. The rest of the paper comprises a lengthy account of the pro-

duction of tables by hand; arguments for the importance of the Difference Engine in

reducing error and speeding up the process; and a request that the government set up
an enquiry into how it might be constructed without delay. It was exactly Lardner’s

intention that the paper should be accessible to a general reader, and someone like

Lovelace, who combined an enthusiasm for and ability in elementary mathematics,

an interest in machinery, and a familiarity with popular science writing, would surely

have been able to grasp his account of the method of differences and the working of

the engine.

For the next few years Lovelace focused more on her family than her mathemat-

ics, and it was not until 1840 that she resumed her studies with Augustus De Morgan,
rapidly developing more advanced mathematical skills (Hollings et al. 2017). This

paper has described her education up to that point, and is the first investigation of

her mathematical knowledge and skills situated in the context of the books she stud-

ied, and the mathematical culture of the time. We have shown how assertions by

Stein of Lovelace’s lack of mathematical ability, and Swade’s claim of her early lack

of understanding of the workings of the Difference Engine, have influenced the tra-

jectory of later scholarly and popular work, with a focus shifting from Lovelace’s

technical achievements to her more ‘imaginative’ writing. Thus, in rebutting these
assertions, we have brought into question widely circulated assessments of Lovelace’s

mathematical competence, as well as showing the important role of specialist histori-

ans of mathematics in studying mathematical archives.
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